Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 188(1): 208-219, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34662399

RESUMO

Recent studies demonstrate that several polyphenolic compounds produced from beyond the canonical monolignol biosynthetic pathways can behave as lignin monomers, participating in radical coupling reactions and being incorporated into lignin polymers. Here, we show various classes of flavonoids, the chalconoid naringenin chalcone, the flavanones naringenin and dihydrotricin, and the flavone tricin, incorporated into the lignin polymer of papyrus (Cyperus papyrus L.) rind. These flavonoids were released from the rind lignin by Derivatization Followed by Reductive Cleavage (DFRC), a chemical degradative method that cleaves the ß-ether linkages, indicating that at least a fraction of each was integrated into the lignin as ß-ether-linked structures. Due to the particular structure of tricin and dihydrotricin, whose C-3' and C-5' positions at their B-rings are occupied by methoxy groups, these compounds can only be incorporated into the lignin through 4'-O-ß bonds. However, naringenin chalcone and naringenin have no substituents at these positions and can therefore form additional carbon-carbon linkages, including 3'- or 5'-ß linkages that form phenylcoumaran structures not susceptible to cleavage by DFRC. Furthermore, Nuclear Magnetic Resonance analysis indicated that naringenin chalcone can also form additional linkages through its conjugated double bond. The discovery expands the range of flavonoids incorporated into natural lignins, further broadens the traditional definition of lignin, and enhances the premise that any phenolic compound present at the cell wall during lignification could be oxidized and potentially integrated into the lignin structure, depending only on its chemical compatibility. This study indicates that papyrus lignin has a unique structure, as it is the only lignin known to date that integrates such a diversity of phenolic compounds from different classes of flavonoids. This discovery will open up new ways to engineer and design lignins with specific properties and for enhanced value.


Assuntos
Sítios de Ligação , Cyperus/química , Cyperus/metabolismo , Flavonoides/biossíntese , Lignina/biossíntese , Estrutura Molecular , Vias Biossintéticas , Egito
2.
J Org Chem ; 88(5): 2884-2897, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36795993

RESUMO

Monomers of benzimidazole trapped in an argon matrix at 15 K were characterized by vibrational spectroscopy and identified as 1H-tautomers exclusively. The photochemistry of matrix-isolated 1H-benzimidazole was induced by excitations with a frequency-tunable narrowband UV light and followed spectroscopically. Hitherto unobserved photoproducts were identified as 4H- and 6H-tautomers. Simultaneously, a family of photoproducts bearing the isocyano moiety was identified. Thereby, the photochemistry of benzimidazole was hypothesized to follow two reaction pathways: the fixed-ring and the ring-opening isomerizations. The former reaction channel results in the cleavage of the NH bond and formation of a benzimidazolyl radical and an H-atom. The latter reaction channel involves the cleavage of the five-membered ring and concomitant shift of the H-atom from the CH bond of the imidazole moiety to the neighboring NH group, leading to 2-isocyanoaniline and subsequently to the isocyanoanilinyl radical. The mechanistic analysis of the observed photochemistry suggests that detached H-atoms, in both cases, recombine with the benzimidazolyl or isocyanoanilinyl radicals, predominantly at the positions with the largest spin density (revealed using the natural bond analysis computations). The photochemistry of benzimidazole therefore occupies an intermediate position between the earlier studied prototype cases of indole and benzoxazole, which exhibit exclusively the fixed-ring and the ring-opening photochemistries, respectively.

3.
J Chem Educ ; 100(4): 1627-1632, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37067885

RESUMO

The concept of co-amorphous systems is introduced in an integrated laboratory experiment, designed for advanced chemistry students, using solvent-free, environmentally friendly mechanochemistry. The dual-drug naproxen-cimetidine co-amorphous system (NPX-CIM) is investigated as an example of the emergent field of medicinal mechanochemistry. Students are trained in solid-state characterization techniques including X-ray powder diffraction, Fourier-transform infrared spectroscopy, and thermal analysis by differential scanning calorimetry. This lab experiment also provides an opportunity to discuss the relevance of different solid forms of pharmaceutics, emphasizing particular properties of disordered materials. This experiment can easily fit the curriculum of any Chemistry or Pharmacy master level degree in courses dealing with instrumental analysis, solid state chemistry, or green chemistry, for classes of 6 to 18 students, in a 5-h lab session. Suggestions to adapt it to the use of a single characterization technique are provided.

4.
Molecules ; 26(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34299657

RESUMO

Papyri belong to the oldest writing grounds in history. Their conservation is of the highest importance in preserving our cultural heritage, which is best achieved based on an extensive knowledge of the materials' constituents to choose a tailored conservation approach. Thermogravimetric Analysis (TGA) has been widely employed to quantify cellulose and lignin in papyrus sheets, yielding reported lignin contents of 25% to 40%. In this work, the TGA method conventionally used for papyrus samples was repeated and compared to other lignin determination approaches (Klason-lignin and acetyl bromide-soluble lignin). TGA can lead to a large overestimation of the lignin content of commercial papyrus sheets (~27%) compared to the other methods (~5%). A similar overestimation of the lignin content was found for the pith and rind of the native papyrus plant. We concluded that the TGA method should, therefore, not be used for lignin quantification.


Assuntos
Lignina/análise , Extratos Vegetais
5.
Molecules ; 26(21)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34771128

RESUMO

In this work, co-crystal screening was carried out for two important dihydrofolate reductase (DHFR) inhibitors, trimethoprim (TMP) and pyrimethamine (PMA), and for 2,4-diaminopyrimidine (DAP), which is the pharmacophore of these active pharmaceutical ingredients (API). The isomeric pyridinecarboxamides and two xanthines, theophylline (THEO) and caffeine (CAF), were used as co-formers in the same experimental conditions, in order to evaluate the potential for the pharmacophore to be used as a guide in the screening process. In silico co-crystal screening was carried out using BIOVIA COSMOquick and experimental screening was performed by mechanochemistry and supported by (solid + liquid) binary phase diagrams, infrared spectroscopy (FTIR) and X-ray powder diffraction (XRPD). The in silico prediction of low propensities for DAP, TMP and PMA to co-crystallize with pyridinecarboxamides was confirmed: a successful outcome was only observed for DAP + nicotinamide. Successful synthesis of multicomponent solid forms was achieved for all three target molecules with theophylline, with DAP co-crystals revealing a greater variety of stoichiometries. The crystalline structures of a (1:2) TMP:THEO co-crystal and of a (1:2:1) DAP:THEO:ethyl acetate solvate were solved. This work demonstrated the possible use of the pharmacophore of DHFR inhibitors as a guide for co-crystal screening, recognizing some similar trends in the outcome of association in the solid state and in the molecular aggregation in the co-crystals, characterized by the same supramolecular synthons.


Assuntos
Inibidores Enzimáticos/farmacologia , Pirimetamina/farmacologia , Pirimidinas/farmacologia , Tetra-Hidrofolato Desidrogenase/metabolismo , Trimetoprima/farmacologia , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Pirimetamina/química , Pirimidinas/química , Trimetoprima/química
6.
Phys Chem Chem Phys ; 22(40): 22943-22955, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33026378

RESUMO

Monomers of 4-methoxyindole and 5-methoxyindole trapped in low-temperature xenon matrices (15-16 K) were characterized by IR spectroscopy, in separate experiments. Each compound was shown to adopt the most stable 1H-tautomeric form. The photochemistry of the matrix-isolated compounds was then investigated by exciting the matrices with narrowband UV light with λ ≤ 305 nm. Two main photoproducts, similar for each compound, have been detected: (1) 4-methoxy- or 5-methoxy-indolyl radical, resulting from cleavage of the N-H bond; (2) 3H-tautomers (4-methoxy- or 5-methoxy-) with the released hydrogen atom reconnected at the C3 ring carbon atom. The presence of the two types of photoproducts in the UV-irradiated matrices was confirmed by comparison of their B3LYP/6-311++G(d,p) calculated IR spectra with the experimental spectra emerging upon the irradiations. The mechanism of the observed phototransformations was elucidated by Natural Bond Orbital and Natural Resonance Theory computations on the methoxy-substituted indolyl radicals resulting from the N-H bond cleavage. The highest natural atomic spin densities were predicted at the C3 and N1 positions of the indolyl ring, corresponding to a predominance of the resonance structures with the radical centres located at these two atoms. As a whole, the obtained experimental and theoretical data allowed establishing a general pattern for the photochemistry of methoxyindoles under matrix-isolation conditions.

7.
J Phys Chem A ; 124(49): 10277-10287, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33245233

RESUMO

The conformational behavior of carboxylic acids has attracted considerable attention, as it can be used as a gateway for the study of more complex phenomena. Here, we present an experimental and computational study of pyrrole-2-carboxylic acid (PCA) conformational space and the vibrational characterization of the compound by infrared spectroscopy. The possibility of promoting conformational transformations using selective vibrational excitation of the 2ν(OH) and 2ν(NH) stretching overtones is explored. Two conformers, exhibiting the cis configuration of the COOH group (O═C-O-H dihedral angle near 0°) and differing by the orientation of the carboxylic group with respect to the pyrrole ring (i.e., showing either a cis or a trans NCC═O arrangement), were found to coexist initially for the compound isolated in a cryogenic nitrogen matrix, in an 86:14 ratio, and were characterized by infrared spectroscopy. A third conformer, with the COOH group in the trans configuration, was produced, in situ, by narrowband near-infrared (NIR) excitation of the most stable PCA form (with a cis NCC═O moiety). The photogenerated PCA conformer was found to decay back to the most stable PCA form, by H-atom quantum mechanical tunneling, with a characteristic half-life time of ∼10 min in the nitrogen matrix at 10 K. Tunneling rates were theoretically estimated and compared for the observed isomerization of pyrrole-2-carboxylic acid and for the structurally similar furan-2-carboxylic acid. This comparison showcases the effect of small modifications in the potential energy surface and the implications of quantum tunneling for the stability of short-living species.

8.
Int J Biol Macromol ; 261(Pt 2): 129694, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281525

RESUMO

The lignin from tritordeum straw, a hybrid cereal from crossbreeding of durum wheat and wild barley, was isolated and chemically characterized. Its composition and structure were studied by analytical pyrolysis (Py-GC/MS), nuclear magnetic resonance spectroscopy (NMR), Derivatization Followed by Reductive Cleavage (DFRC) method, and gel permeation chromatography (GPC). The data revealed an enrichment of guaiacyl (G) units (H:G:S of 3:61:36), which had a significant impact on the distribution of inter-unit linkages. The predominant linkages were the ß-O-4' alkyl-aryl ethers (78 % of all linkages), with substantial proportions of condensed linkages such as phenylcoumarans (11 %), resinols (4 %), spirodienones (4 %), and dibenzodioxocins (2 %). Moreover, DFRC revealed that tridordeum straw lignin was partly acylated at the γ-OH with both acetates and p-coumarates. Acetates were principally attached to G-units, whereas p-coumarates were predominantly attached to S-units. Furthermore, and more importantly, tritordeum lignin incorporates remarkable amounts of a valuable flavone, tricin, exceeding 30 g per kilogram of straw. Given the diverse industrial applications associated with this high-value molecule, tritordeum straw emerges as a promising and sustainable resource for its extraction.


Assuntos
Grão Comestível , Flavonoides , Lignina , Lignina/química , Grão Comestível/química , Estrutura Molecular , Acetatos/análise
9.
Polymers (Basel) ; 15(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37111987

RESUMO

The pruning of sweet orange trees (Citrus sinensis) generates large amounts of lignocellulosic residue. Orange tree pruning (OTP) residue presents a significant lignin content (21.2%). However, there are no previous studies describing the structure of the native lignin in OTPs. In the present work, the "milled-wood lignin" (MWL) was extracted from OTPs and examined in detail via gel permeation chromatography (GPC), pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), and two-dimensional nuclear magnetic resonance (2D-NMR). The results indicated that the OTP-MWL was mainly composed of guaiacyl (G) units, followed by syringyl (S) units and minor amounts of p-hydroxyphenyl (H) units (H:G:S composition of 1:62:37). The predominance of G-units had a strong influence on the abundance of the different linkages; therefore, although the most abundant linkages were ß-O-4' alkyl-aryl ethers (70% of total lignin linkages), the lignin also contained significant amounts of phenylcoumarans (15%) and resinols (9%), as well as other condensed linkages such as dibenzodioxocins (3%) and spirodienones (3%). The significant content of condensed linkages will make this lignocellulosic residue more recalcitrant to delignification than other hardwoods with lower content of these linkages.

10.
Int J Biol Macromol ; 242(Pt 2): 124811, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37187416

RESUMO

The differences in the composition and structure of the lignins from straws of different oat (Avena sativa L.) varieties, planted in two seasons (winter and spring), were studied in detail by different analytical techniques such as pyrolysis coupled to gas chromatography-mass spectrometry (Py-GC/MS), two-dimensional nuclear magnetic resonance (2D-NMR), derivatization followed by reductive cleavage (DFRC), and gel permeation chromatography (GPC). Overall, the analyses revealed that oat straw lignins were enriched in guaiacyl (G; 50-56 %) and syringyl (S; 39-44 %) units, with relatively lower amounts of p-hydroxyphenyl (H; 4-6 %) units. The lignins also incorporated significant quantities of p-coumarates (8-14 % of total lignin units), which are acylating the γ-OH of the lignin side chains, and predominantly over the S units. Furthermore, oat straw lignins also incorporated considerable amounts of the flavone tricin (5-12 % of total lignin units). Interestingly, this study revealed that the lignin content and composition of the oat straws vary with genotype and planting season. Since p-coumarates and tricin are high-value aromatic compounds especially attractive from a biorefinery point of view, the information disclosed here is highly relevant to plant breeding programs aimed at developing functional foods and lignin modifications for improved biorefinery applications.


Assuntos
Avena , Lignina , Lignina/química , Estações do Ano , Melhoramento Vegetal , Espectroscopia de Ressonância Magnética
11.
Cryst Growth Des ; 23(9): 6679-6691, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37692331

RESUMO

Different methods were explored for the amorphization of ranolazine, a sparingly soluble anti-anginal drug, such as mechanochemistry, quench-cooling, and solvent evaporation from solutions. Amorphous phases, with Tg values lower than room temperature, were obtained by cryo-milling and quench-cooling. New forms of ranolazine, named II and III, were identified from the relaxation of the ranolazine amorphous phase produced by cryo-milling, which takes place within several hours after grinding. At room temperature, these metastable polymorphs relax to the lower energy polymorph I, whose crystal structure was solved in this work for the first time. A binary co-amorphous mixture of ranolazine and tryptophan was produced, with three important advantages: higher glass transition temperature, increased kinetic stability preventing relaxation of the amorphous to crystalline phases for at least two months, and improved aqueous solubility. Concomitantly, the thermal behavior of amorphous tryptophan obtained by cryo-milling was studied by DSC. Depending on experimental conditions, it was possible to observe relaxation directly to the lower energy form or by an intermediate metastable crystalline phase and the serendipitous production of the neutral form of this amino acid in the pure solid phase.

12.
Front Plant Sci ; 13: 868319, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392522

RESUMO

Rice (Oryza sativa L.) straw is a highly abundant, widely available, and low cost agricultural waste that can be used as a source to extract valuable phytochemicals of industrial interest. Hence, in the present work, the chemical composition of the lipophilic compounds present in rice straw was thoroughly characterized by gas chromatography and mass spectrometry using medium-length high-temperature capillary columns, which allowed the identification of a wide range of lipophilic compounds, from low molecular weight fatty acids to high molecular weight sterols esters, sterol glucosides, or triglycerides in the same chromatogram. The most abundant lipophilic compounds in rice straw were fatty acids, which accounted for up to 6,400 mg/kg (41.0% of all identified compounds), followed by free sterols (1,600 mg/kg; 10.2%), sterol glucosides (1,380 mg/kg; 8.8%), fatty alcohols (1,150 mg/kg; 7.4%), and triglycerides (1,140 mg/kg; 7.3%), along with lower amounts of high molecular weight wax esters (900 mg/kg; 5.8%), steroid ketones (900 mg/kg; 5.8%), monoglycerides (600 mg/kg; 3.8%), alkanes (400 mg/kg; 2.6%), diglycerides (380 mg/kg; 2.4%), sterol esters (380 mg/kg; 2.4%), tocopherols (340 mg/kg; 2.2%), and steroid hydrocarbons (60 mg/kg; 0.4%). This information is of great use for the valorization of rice straw to obtain valuable lipophilic compounds of interest for the nutraceutical, pharmaceutical, cosmetic, and chemical industries. Moreover, this knowledge is also useful for other industrial uses of rice straw, as in pulp and papermaking, since some lipophilic compounds are at the origin of the so-called pitch deposits during pulping.

13.
Front Plant Sci ; 13: 1097866, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618622

RESUMO

Papyrus (Cyperus papyrus L.) is a sedge plant with a high rate of biomass productivity that represents an interesting raw material to produce chemicals, materials and fuels, which are currently still obtained from fossil resources, in the context of a lignocellulosic biorefinery. In this work, the content and chemical composition of the lipids present in papyrus stems were thoroughly studied. For this, the papyrus stems were separated into the rind and the pith. The lipid content accounted for 4.1% in the rind and 4.9% in the pith (based on dry matter). The main compounds identified in both parts of the papyrus stem were hydrocarbons, n-fatty acids, 2-hydroxyfatty acids, alcohols, alkylamides, mono- and diglycerides, steroids (sterols, ketones, hydrocarbons, esters and glycosides), tocopherols, tocopherol esters, phytol, phytol esters, alkyl ferulates, ω-carboxyalkyl ferulates (and their monoglycerides), and acylglycerol glycosides. The rind presented a predominance of n-fatty acids (6790 mg/kg; that represented 28.6% of all identified compounds), steroid compounds (6255 mg/kg; 26.3%), phytol and phytol esters (4985 mg/kg; 21.0%), and isoprenoid hydrocarbons, namely phytadiene and squalene (2660 mg/kg; 11.2%), while the most abundant lipids in the pith were steroids (8600 mg/kg; 44.4% of all identified compounds) and fatty acids (6245 mg/kg; 32.2%). Due to the great diversity and significant abundance of the compounds identified in papyrus, it can be considered as a potential raw material for biorefineries to obtain valuable phytochemicals of interest to various industrial sectors.

15.
Front Plant Sci ; 12: 640475, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679856

RESUMO

Rice (Oryza sativa L.) is a major cereal crop used for human nutrition worldwide. Harvesting and processing of rice generates huge amounts of lignocellulosic by-products such as rice husks and straw, which present important lignin contents that can be used to produce chemicals and materials. In this work, the structural characteristics of the lignins from rice husks and straw have been studied in detail. For this, whole cell walls of rice husks and straw and their isolated lignin preparations were thoroughly analyzed by an array of analytical techniques, including pyrolysis coupled to gas chromatography-mass spectrometry (Py-GC/MS), nuclear magnetic resonance (NMR), and derivatization followed by reductive cleavage (DFRC). The analyses revealed that both lignins, particularly the lignin from rice husks, were highly enriched in guaiacyl (G) units, and depleted in p-hydroxyphenyl (H) and syringyl (S) units, with H:G:S compositions of 7:81:12 (for rice husks) and 5:71:24 (for rice straw). These compositions were reflected in the relative abundances of the different interunit linkages. Hence, the lignin from rice husks were depleted in ß-O-4' alkyl-aryl ether units (representing 65% of all inter-unit linkages), but presented important amounts of ß-5' (phenylcoumarans, 23%) and other condensed units. On the other hand, the lignin from rice straw presented higher levels of ß-O-4' alkyl-aryl ethers (78%) but lower levels of phenylcoumarans (ß-5', 12%) and other condensed linkages, consistent with a lignin with a slightly higher S/G ratio. In addition, both lignins were partially acylated at the γ-OH of the side-chain (ca. 10-12% acylation degree) with p-coumarates, which overwhelmingly occurred over S-units. Finally, important amounts of the flavone tricin were also found incorporated into these lignins, being particularly abundant in the lignin of rice straw.

16.
Endocrinol Diabetes Nutr (Engl Ed) ; 68(2): 92-98, 2021 Feb.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-32828709

RESUMO

INTRODUCTION: Sarcopenia is a syndrome characterized by the loss of muscle mass and strength. The study objective was to determine the association between muscle density and overall survival (OS) in patients with metastatic onset prostate cancer (MPCa). MATERIALS AND METHODS: This was a retrospective study of patients diagnosed with MPCa between 2009 and 2015 who received androgen deprivation therapy alone as initial treatment. Muscle density was calculated using the Hounsfield Unit Average Calculation (HUAC) in both psoas muscles in the computed tomography (CT) scan performed for diagnosis. RESULTS: A total of 59 patients diagnosed with MPCa, with a mean age of 57.5±72.47 years, were found. Median prostate-specific antigen (PSA) level at diagnosis was 68.25 ng/dL (IQR 37.26-290). Gleason scores≥8 were recorded in 90.75% of the patients, bone metastases in 88.13%, and visceral metastases in 10.16%. Median HUAC was 20.32 HU (IQR 15.46-22.83). In a univariate analysis, the number of bone metastases, the presence of visceral metastases, and testosterone levels≥50 ng/dL at follow-up were associated with poorer OS, while high HUAC levels were associated with better OS. In a multivariate analysis, the number of bone metastases [hazard ratio (HR)=1.573, 95% confidence interval (CI)=1.103-2.243, p=0.012], the presence of visceral metastases (HR=7.404, CI=2.233-24.549, p=0.001), and the Gleason score (HR=2.001, CI=1.02-3.923, p=0.044) were associated with greater overall mortality, and HUAC (HR=0.902, CI=0.835-0.973, p=0.008) was associated with better OS. CONCLUSIONS: In our series, increased HUAC values in the psoas muscles, as a reflection of muscle density, when MPCa was diagnosed had a protective effect on OS in these patients.

17.
J Phys Chem A ; 113(26): 7499-507, 2009 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-19388693

RESUMO

The complete conformational space of monomeric 1,3-butanediol has been characterized theoretically, and 73 unique stable conformers were found at the MP2/6-311++G(d,p) level. These were classified into nine families whose members share the same heavy atom backbone configurations and differ in the hydrogen atom orientations. The first and third most populated backbone families are governed by the formation of an intramolecular hydrogen bond; however, the second precludes this type of interaction and was frequently overlooked in previous studies. Its stability is determined by the relatively high entropy of its main conformers. The hydrogen bonding of four of the most important conformers was characterized by means of atoms in molecules (AIM, also known as QTAIM) and natural bond orbital (NBO) analyses. Using appropriate isodesmic reactions, hydrogen bonding energy stabilizations of 12-14 kJ mol(-1) have been found. Experimentally, monomeric molecules of 1,3-butanediol were isolated in low-temperature inert matrixes, and their infrared spectra were analyzed from the viewpoint of the conformational distribution. All the relevant transition states for the conformational interconversion reaction paths were characterized at the same level of theory to interpret the conformational cooling dynamics observed in the low-temperature matrixes. The energy barriers for rotation of the OH groups were calculated to be very low (<3 kJ mol(-1)). These barriers were overcome in the experiments at 10 K (Ar matrix), in the process of matrix deposition, and population within each family was reduced to the most stable conformers. Further increase in the substrate temperature (up to 40 K, Xe matrix) resulted in conformational cooling where the medium-height barriers (approximately 13 kJ mol(-1)) could be surmounted and all conformational population converted to the ground conformational state. Remarkably, this state turned to consist of two forms of the most stable hydrogen bonded family, which were predicted by calculations to be accidentally degenerated and were found in the annealed matrix in equal amounts. All of these experimentally observed conformational cooling processes were analyzed and supported by full agreement with the theoretical calculations.


Assuntos
Butileno Glicóis/química , Modelos Químicos , Ligação de Hidrogênio , Conformação Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Estereoisomerismo , Termodinâmica
18.
J Phys Chem A ; 112(20): 4669-78, 2008 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-18444635

RESUMO

Theoretical calculations at the MP2 level, NBO and AIM analysis, and matrix-isolation infrared spectroscopy have been used to investigate the structure of the isolated molecule of 1,4-butanediol (1,4-BDO). Sixty-five structures were found to be minima on the potential energy surface, and the three most stable forms are characterized by a folded backbone conformation leading to the formation of an intramolecular H-bond. To better characterize the intramolecular interactions and particularly the hydrogen bonds, natural bond orbital analysis (NBO) was performed for the four most stable conformers, and was further complemented with an atoms-in-molecules (AIM) topological analysis. Infrared spectra of 1,4-BDO isolated in low-temperature argon and xenon matrixes show a good agreement with a population-weighted mean theoretical spectrum, and the spectral features of the conformers expected to be trapped in the matrixes were observed experimentally. Annealing the xenon matrix from 20 to 60 K resulted in significant spectral changes, which were interpreted based on the barriers to intramolecular rotation. An estimation of the intramolecular hydrogen bond energy was carried out following three different methodologies.


Assuntos
Butileno Glicóis/química , Teoria Quântica , Argônio/química , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Espectrofotometria Infravermelho , Análise Espectral , Temperatura , Vibração , Xenônio/química
19.
Sci Total Environ ; 613-614: 969-976, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28946384

RESUMO

The effects of aging on biochar (BC) properties, composition and carbon sequestration are still under debate. This study aimed at illustrating the qualitative alterations of five different BCs aged during a 24-month field experiment located in Southwest Spain. To determine the recalcitrance of each BC, physical fragmentation test, scanning electron microscopy, 13C NMR spectroscopy and CO2-respiration experiments were performed. The physical fragmentation values of all types of BC increased significantly over time at field conditions. FESEM examinations of aged BCs showed collapsed structures and the presence of entrapped soil material and microbial mats into the BC pores. The 13C NMR spectroscopy demonstrated an increase of the relative abundance of O-alkyl C and alkyl C at expenses of aromatic-C in aged BCs. The C losses of all BCs ranged from 27% to 11% of the initial C. In contrast, the nitrogen (N) content of wood-derived BCs significantly increased probably due to the sorption of nitrogen containing compounds into these highly-porous weathered chars. With the exception of that for the sewage sludge-BC, the pH of all aged BCs decreased from >9 to the soil pH, indicating a short lasting of the liming effect caused by BC addition. The respiration experiment revealed that BC recalcitrance was much lower than expected and, within the range of decades. Only wood-derived BCs significantly increased the mean residence time of the slow C pool of the Cambisol by factors between 3.4 and 7.7. Mediterranean climate conditions and the characteristics of the Cambisol used probably accelerated the microbial degradation of BCs.

20.
Carbohydr Res ; 340(2): 283-91, 2005 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-15639248

RESUMO

Density functional theory calculations using the B3LYP functional and the 6-311++G(d,p) basis set were carried out on the isolated molecules of erythritol and L-threitol. For the meso isomer, a relatively large number of conformers have to be considered to describe the gas state structure. The lowest energy conformer is characterized by the establishment of a strong intramolecular H-bond between the two terminal hydroxyl groups, giving rise to a seven-membered ring and two additional weaker H-bonds between vicinal OH groups. In the case of L-threitol, two conformers are predominant in the gas state, and both are stabilized by the formation of a cyclic system of four intramolecular hydrogen bonds involving all OH groups. The conformational stability in both diastereomers is discussed in terms of the electronic energy and of the Gibbs energy. The weighted mean enthalpy of both diastereomers in the gas state at 298.15 K was obtained from the thermodynamic data and Boltzmann populations of the low-energy conformers.


Assuntos
Eritritol/química , Gases/química , Álcoois Açúcares/química , Configuração de Carboidratos , Ligação de Hidrogênio , Isomerismo , Modelos Químicos , Modelos Moleculares , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA