Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Microbiol ; 51(5): 1517-27, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23486708

RESUMO

CCR5 antagonists are a powerful new class of antiretroviral drugs that require a companion assay to evaluate the presence of CXCR4-tropic (non-R5) viruses prior to use in human immunodeficiency virus (HIV)-infected individuals. In this study, we have developed, characterized, verified, and prevalidated a novel phenotypic test to determine HIV-1 coreceptor tropism (VERITROP) based on a sensitive cell-to-cell fusion assay. A proprietary vector was constructed containing a near-full-length HIV-1 genome with the yeast uracil biosynthesis (URA3) gene replacing the HIV-1 env coding sequence. Patient-derived HIV-1 PCR products were introduced by homologous recombination using an innovative yeast-based cloning strategy. The env-expressing vectors were then used in a cell-to-cell fusion assay to determine the presence of R5 and/or non-R5 HIV-1 variants within the viral population. Results were compared with (i) the original version of Trofile (Monogram Biosciences, San Francisco, CA), (ii) population sequencing, and (iii) 454 pyrosequencing, with the genotypic data analyzed using several bioinformatics tools, i.e., the 11/24/25 rule, Geno2Pheno (2% to 5.75%, 3.5%, or 10% false-positive rate [FPR]), and webPSSM. VERITROP consistently detected minority non-R5 variants from clinical specimens, with an analytical sensitivity of 0.3%, with viral loads of ≥1,000 copies/ml, and from B and non-B subtypes. In a pilot study, a 73.7% (56/76) concordance was observed with the original Trofile assay, with 19 of the 20 discordant results corresponding to non-R5 variants detected using VERITROP and not by the original Trofile assay. The degree of concordance of VERITROP and Trofile with population and deep sequencing results depended on the algorithm used to determine HIV-1 coreceptor tropism. Overall, VERITROP showed better concordance with deep sequencing/Geno2Pheno at a 0.3% detection threshold (67%), whereas Trofile matched better with population sequencing (79%). However, 454 sequencing using Geno2Pheno at a 10% FPR and 0.3% threshold and VERITROP more accurately predicted the success of a maraviroc-based regimen. In conclusion, VERITROP may promote the development of new HIV coreceptor antagonists and aid in the treatment and management of HIV-infected individuals prior to and/or during treatment with this class of drugs.


Assuntos
HIV-1/fisiologia , Receptores CCR5/genética , Receptores CXCR4/genética , Receptores de HIV/antagonistas & inibidores , Receptores de HIV/metabolismo , Tropismo Viral , Fármacos Anti-HIV/farmacologia , Fusão Celular , Linhagem Celular , Cicloexanos , Genoma Viral , Genótipo , Células HEK293 , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Humanos , Maraviroc , Projetos Piloto , RNA Viral/genética , Proteínas de Saccharomyces cerevisiae/genética , Sensibilidade e Especificidade , Triazóis , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
2.
Antimicrob Agents Chemother ; 55(8): 3729-42, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21628544

RESUMO

Twenty-six antiretroviral drugs (ARVs), targeting five different steps in the life cycle of the human immunodeficiency virus type 1 (HIV-1), have been approved for the treatment of HIV-1 infection. Accordingly, HIV-1 phenotypic assays based on common cloning technology currently employ three, or possibly four, different recombinant viruses. Here, we describe a system to assess HIV-1 resistance to all drugs targeting the three viral enzymes as well as viral assembly using a single patient-derived, chimeric virus. Patient-derived p2-INT (gag-p2/NCp7/p1/p6/pol-PR/RT/IN) products were PCR amplified as a single fragment (3,428 bp) or two overlapping fragments (1,657 bp and 2,002 bp) and then recombined into a vector containing a near-full-length HIV-1 genome with the Saccharomyces cerevisiae uracil biosynthesis gene (URA3) replacing the 3,428 bp p2-INT segment (Dudley et al., Biotechniques 46:458-467, 2009). P2-INT-recombinant viruses were employed in drug susceptibility assays to test the activity of protease (PI), nucleoside/nucleotide reverse transcriptase (NRTI), nonnucleoside reverse transcriptase (NNRTI), and integrase strand-transfer (INSTI) inhibitors. Using a single standardized test (ViralARTS HIV), this new technology permits the rapid and automated quantification of phenotypic resistance for all known and candidate antiretroviral drugs targeting all viral enzymes (PR, RT, including polymerase and RNase H activities, and IN), some of the current and potential assembly inhibitors, and any drug targeting Pol or Gag precursor cleavage sites (relevant for PI and maturation inhibitors) This novel assay may be instrumental (i) in the development and clinical assessment of novel ARV drugs and (ii) to monitor patients failing prior complex treatment regimens.


Assuntos
Fármacos Anti-HIV/farmacologia , Farmacorresistência Viral Múltipla , Genes pol , HIV-1/efeitos dos fármacos , Sequência de Bases , Células HEK293 , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Inibidores de Integrase de HIV/farmacologia , Inibidores da Protease de HIV/farmacologia , Transcriptase Reversa do HIV/genética , Transcriptase Reversa do HIV/metabolismo , Humanos , Fenótipo , Inibidores da Transcriptase Reversa/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribonuclease H/genética , Ribonuclease H/metabolismo , Análise de Sequência de RNA
3.
Protein Sci ; 22(11): 1646-54, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23963792

RESUMO

The low solubility of many proteins hinders large scale expression and purification as well as biophysical measurements. Here, we devised a general strategy to solubilize a protein by conjugating it at a solvent-exposed position to a 6 kDa protein that was re-engineered to be highly soluble. We applied this method to the CARD domain of Apoptosis-associated speck-like protein containing a CARD (ASC), which represents one member of a class of proteins that are notoriously prone to aggregation. Attachment of the tag to a cysteine residue, introduced by site-directed mutagenesis at its self-association interface, improved the solubility of the ASC CARD over 50-fold under physiological conditions. Although it is not possible to use nuclear magnetic resonance (NMR) to obtain a high quality 2D correlation spectrum of the wild type domain under physiological conditions, we demonstrate that NMR relaxation parameters of the solubilized variant are sufficiently improved to facilitate virtually any demanding measurement. The method shown here represents a straightforward approach for dramatically increasing protein solubility, enabled by ease of labeling as well as flexibility in tag placement with minimal perturbation to the target.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Engenharia de Proteínas/métodos , Proteínas Recombinantes de Fusão/química , Sequência de Aminoácidos , Dicroísmo Circular , Cisteína/metabolismo , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Solubilidade , Proteína Estafilocócica A/genética , Proteína Estafilocócica A/metabolismo
4.
PLoS One ; 8(6): e65631, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23776513

RESUMO

Most studies describing phenotypic resistance to integrase strand transfer inhibitors have analyzed viruses carrying only patient-derived HIV-1 integrase genes (INT-recombinant viruses). However, to date, many of the patients on INSTI-based treatment regimes, such as raltegravir (RAL), elvitegravir (EVG), and dolutegravir (DTG) are infected with multidrug-resistant HIV-1 strains. Here we analyzed the effect of drug resistance mutations in Gag (p2/NCp7/p1/p6), protease (PR), reverse transcriptase (RT), and integrase (IN) coding regions on susceptibility to INSTIs and viral replicative fitness using a novel HIV-1 phenotyping assay. Initial characterization based on site-directed mutant INSTI-resistant viruses confirmed the effect of a series of INSTI mutations on reduced susceptibility to EVG and RAL and viral replicative fitness (0.6% to 99% relative to the HIV-1NL4-3 control). Two sets of recombinant viruses containing a 3,428-bp gag-p2/NCp7/p1/p6/pol-PR/RT/IN (p2-INT) or a 1,088 bp integrase (INT) patient-derived fragment were constructed from plasma samples obtained from 27 virologic failure patients participating in a 48-week dose-ranging study of elvitegravir, GS-US-183-0105. A strong correlation was observed when susceptibility to EVG and RAL was assayed using p2-INT- vs. INT-recombinant viruses (Pearson coefficient correlation 0.869 and 0.918, P<0.0001 for EVG and RAL, respectively), demonstrating that mutations in the protease and RT have limited effect on susceptibility to these INSTIs. On the other hand, the replicative fitness of viruses harboring drug resistance mutations in PR, RT, and IN was generally impaired compared to viruses carrying only INSTI-resistance mutations. Thus, in the absence of drug pressure, drug resistance mutations in the PR and RT contribute to decrease the replicative fitness of the virus already impaired by mutations in the integrase. The use of recombinant viruses containing most or all HIV-1 regions targeted by antiretroviral drugs might be essential to understand the collective effect of epistatic interactions in multidrug-resistant viruses.


Assuntos
Antirretrovirais/farmacologia , HIV-1/efeitos dos fármacos , HIV-1/genética , Integrases/genética , Linhagem Celular , Inibidores de Integrase de HIV/farmacologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Mutação , Oxazinas , Piperazinas , Piridonas , Pirrolidinonas/farmacologia , Quinolonas/farmacologia , Raltegravir Potássico
5.
Curr Opin HIV AIDS ; 4(2): 136-42, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19339953

RESUMO

PURPOSE OF REVIEW: HIV-1 entry into target cells is a complex multistage process involving the envelope glycoprotein, primary cellular receptor CD4, and at least two main cellular coreceptors, CCR5 and CXCR4. The identification of the HIV-1 coreceptors led to the rapid development of several drug candidates that selectively block this interaction, that is, CCR5 or CXCR4 antagonists. Here, we review different methodologies used to determine the ability of the virus to use one or both coreceptors and their potential role in managing HIV-infected individuals treated with these novel drugs. RECENT FINDINGS: Most commercially available HIV-1 tropism assays are cell-based (phenotypic) tests, which use different methodologies to generate env-recombinant viruses and distinct detection systems. On the other hand, a large effort is being devoted to develop more robust bioinformatic (genotypic) tools that may expedite HIV-1 tropism assays without compromising their accuracy. The main goal, however, continues to be to improve the sensitivity to detect minor CXCR4-tropic variants within the in-vivo HIV-1 quasispecies. SUMMARY: An accurate determination, and perhaps quantification, of HIV-1 coreceptor usage is necessary for the successful management of HIV-infected individuals in the new era of entry inhibitors. Further studies, aimed to the development of novel methodologies, are essential for the success of this new class of drugs.


Assuntos
HIV-1/fisiologia , Receptores de HIV/análise , Virologia/métodos , Internalização do Vírus , Infecções por HIV/virologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA