Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neurogenetics ; 21(4): 259-267, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32462292

RESUMO

Deficiency of the endoplasmic reticulum transmembrane protein ARV1 leads to epileptic encephalopathy in humans and in mice. ARV1 is highly conserved, but its function in human cells is unknown. Studies of yeast arv1 null mutants indicate that it is involved in a number of biochemical processes including the synthesis of sphingolipids and glycosylphosphatidylinositol (GPI), a glycolipid anchor that is attached to the C-termini of many membrane bound proteins. GPI anchors are post-translational modifications, enabling proteins to travel from the endoplasmic reticulum (ER) through the Golgi and to attach to plasma membranes. We identified a homozygous pathogenic mutation in ARV1, p.Gly189Arg, in two brothers with infantile encephalopathy, and characterized the biochemical defect caused by this mutation. In addition to reduced expression of ARV1 transcript and protein in patients' fibroblasts, complementation tests in yeast showed that the ARV1 p.Gly189Arg mutation leads to deficient maturation of Gas1, a GPI-anchored protein, but does not affect sphingolipid synthesis. Our results suggest, that similar to mutations in other proteins in the GPI-anchoring pathway, including PIGM, PIGA, and PIGQ, ARV1 p.Gly189Arg causes a GPI anchoring defect and leads to early onset epileptic encephalopathy.


Assuntos
Encefalopatias/genética , Proteínas de Transporte/genética , Glicosilfosfatidilinositóis/biossíntese , Deficiência Intelectual/genética , Proteínas de Membrana/genética , Convulsões/genética , Adolescente , Criança , Retículo Endoplasmático/metabolismo , Fibroblastos/metabolismo , Teste de Complementação Genética , Complexo de Golgi/metabolismo , Homozigoto , Humanos , Lipídeos/química , Masculino , Manosiltransferases/genética , Mutação , Linhagem , Domínios Proteicos , Temperatura
2.
Genet Med ; 21(6): 1390-1399, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30449887

RESUMO

PURPOSE: To develop an economical, user-friendly, and accurate all-in-one next-generation sequencing (NGS)-based workflow for single-cell gene variant detection combined with comprehensive chromosome screening in a 24-hour workflow protocol. METHODS: We subjected single lymphoblast cells or blastomere/blastocyst biopsies from four different families to low coverage (0.3×-1.4×) genome sequencing. We combined copy-number variant (CNV) detection and whole-genome haplotype phase prediction via Haploseek, a novel, user-friendly analysis pipeline. We validated haplotype predictions for each sample by comparing with clinical preimplantation genetic diagnosis (PGD) case results or by single-nucleotide polymorphism (SNP) microarray analysis of bulk DNA from each respective lymphoblast culture donor. CNV predictions were validated by established commercial kits for single-cell CNV prediction. RESULTS: Haplotype phasing of the single lymphoblast/embryo biopsy sequencing data was highly concordant with relevant ground truth haplotypes in all samples/biopsies from all four families. In addition, whole-genome copy-number assessments were concordant with the results of a commercial kit. CONCLUSION: Our results demonstrate the establishment of a reliable method for all-in-one molecular and chromosomal diagnosis of single cells. Important features of the Haploseek pipeline include rapid sample processing, rapid sequencing, streamlined analysis, and user-friendly reporting, so as to expedite clinical PGD implementation.


Assuntos
Testes Genéticos/métodos , Haplótipos/genética , Diagnóstico Pré-Implantação/métodos , Aneuploidia , Biópsia , Blastocisto , Cromossomos , Variações do Número de Cópias de DNA/genética , Feminino , Fertilização in vitro , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Gravidez
3.
Endocrine ; 69(3): 650-654, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32372306

RESUMO

PURPOSE: Mutations in the gene HSD17B3 encoding the 17-beta hydroxysteroid dehydrogenase 3 enzyme cause testosterone insufficiency leading to XY disorders of sex development. In this study the clinical and molecular characteristics of three patients from consanguineous families are elucidated. METHODS: We identified three patients from two unrelated families with XY DSD and a novel homozygous HSD17B3:c. 673G>A mutation. The effect of the mutation on splicing was determined in RNA extracted from the testis of one patient. RESULTS: Three patients presented at ages 0.1, 8 and 0.7 years with ambiguous genitalia and an XY Karyotype. Endocrine workup showed normal cortisol and mineralocorticoid levels with a low testosterone/androstenedione ratio. Whole-exome sequencing, carried out in the first family, revealed a homozygous novel mutation in the HSD17B3 gene: c. 673G>A, p. V225M. The same mutation was found by Sanger sequencing in the third unrelated patient. Haplotype analysis of a 4 Mb region surrounding the HSD17B3 gene on chromosome 9 revealed that the mutation resides on the same allele in all three patients. The mutation, being the first nucleic acid on exon 10, affects splicing and causes exon 10 skipping in one of our patients' testes. CONCLUSION: The novel homozygous c. 673G>A, p. V225M mutation in the 17HSDB3 gene is likely a founder mutation and causes severe XY-DSD. It changes a conserved amino acid residue, and also alters 17HSDB3 gene transcription by causing skipping of exon 10, thereby contributing to an imbalance in the relevant protein isoforms and consequently, significant decreased 17HDSB3 enzymatic activity.


Assuntos
Transtorno 46,XY do Desenvolvimento Sexual , 17-Hidroxiesteroide Desidrogenases/genética , Transtorno 46,XY do Desenvolvimento Sexual/genética , Éxons , Homozigoto , Humanos , Lactente , Masculino , Mutação
4.
Sci Rep ; 8(1): 15941, 2018 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-30374031

RESUMO

Prenatal genetic testing is not generally applicable to the very early stages of pregnancy (prior to week 8 gestation), a time period that is crucial to pregnant couples with high risk for transmission of genetic disease to their fetus. Therefore, we developed a new ultra-sensitive targeted next generation sequencing method for noninvasive haplotype-based paternal allele exclusion testing of the cystic fibrosis-associated gene, CFTR. This new method was compared to a conventional library prep and sequencing analysis method and all test results were validated by amniotic fluid testing at later stages of pregnancy. Out of 7 enrolled couples, who provided at least two blood samples (at least one week apart) for noninvasive CFTR testing, a result was obtained for 6 fetuses. Using the new hypersensitive method, all six couples (100%) received a correct diagnosis for the paternal allele as opposed to 3/6 (50%) when tested with the conventional strategy. Among 4 couples who provided just one early pregnancy blood draw for analysis, diagnosis was possible in one fetus, but only using the ultra-sensitive method. Thus, we describe a novel noninvasive CFTR screening method which demonstrates unprecedented fetal allele typing accuracy in the earliest stages of pregnancy.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/diagnóstico , Testes Genéticos/métodos , Diagnóstico Pré-Natal/métodos , Alelos , Fibrose Cística/genética , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , Feminino , Genótipo , Idade Gestacional , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Gravidez , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA