Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 22(1): 240, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33823812

RESUMO

BACKGROUND: Spiroplasma is a widely distributed endosymbiont of insects, arthropods, and plants. In insects, Spiroplasma colonizes the gut, hemolymph, and reproductive organs of the host. Previous metagenomic surveys of the domesticated carmine cochineal Dactylopius coccus and the wild cochineal D. opuntiae reported sequences of Spiroplasma associated with these insects. However, there is no analysis of the genomic capabilities and the interaction of this Spiroplasma with Dactylopius. RESULTS: Here we present three Spiroplasma genomes independently recovered from metagenomes of adult males and females of D. coccus, from two different populations, as well as from adult females of D. opuntiae. Single-copy gene analysis showed that these genomes were > 92% complete. Phylogenomic analyses classified these genomes as new members of Spiroplasma ixodetis. Comparative genome analysis indicated that they exhibit fewer genes involved in amino acid and carbon catabolism compared to other spiroplasmas. Moreover, virulence factor-encoding genes (i.e., glpO, spaid and rip2) were found incomplete in these S. ixodetis genomes. We also detected an enrichment of genes encoding the type IV secretion system (T4SS) in S. ixodetis genomes of Dactylopius. A metratranscriptomic analysis of D. coccus showed that some of these T4SS genes (i.e., traG, virB4 and virD4) in addition to the superoxide dismutase sodA of S. ixodetis were overexpressed in the ovaries. CONCLUSION: The symbiont S. ixodetis is a new member of the bacterial community of D. coccus and D. opuntiae. The recovery of incomplete virulence factor-encoding genes in S. ixodetis of Dactylopius suggests that this bacterium is a non-pathogenic symbiont. A high number of genes encoding the T4SS, in the S. ixodetis genomes and the overexpression of these genes in the ovary and hemolymph of the host suggest that S. ixodetis use the T4SS to interact with the Dactylopius cells. Moreover, the transcriptional differences of S. ixodetis among the gut, hemolymph and ovary tissues of D. coccus indicate that this bacterium can respond and adapt to the different conditions (e.g., oxidative stress) present within the host. All this evidence proposes that there is a strong interaction and molecular signaling in the symbiosis between S. ixodetis and the carmine cochineal Dactylopius.


Assuntos
Hemípteros , Spiroplasma , Animais , Carmim , Feminino , Genômica , Masculino , Spiroplasma/genética
2.
Mol Biol Evol ; 34(9): 2340-2354, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28541477

RESUMO

Functional gene transfers from the mitochondrion to the nucleus are ongoing in angiosperms and have occurred repeatedly for all 15 ribosomal protein genes, but it is not clear why some of these genes are transferred more often than others nor what the balance is between DNA- and RNA-mediated transfers. Although direct insertion of mitochondrial DNA into the nucleus occurs frequently in angiosperms, case studies of functional mitochondrial gene transfer have implicated an RNA-mediated mechanism that eliminates introns and RNA editing sites, which would otherwise impede proper expression of mitochondrial genes in the nucleus. To elucidate the mechanisms that facilitate functional gene transfers and the evolutionary dynamics of the coexisting nuclear and mitochondrial gene copies that are established during these transfers, we have analyzed rpl5 genes from 90 grasses (Poaceae) and related monocots. Multiple lines of evidence indicate that rpl5 has been functionally transferred to the nucleus at least three separate times in the grass family and that at least seven species have intact and transcribed (but not necessarily functional) copies in both the mitochondrion and nucleus. In two grasses, likely functional nuclear copies of rpl5 have been subject to recent gene conversion events via secondarily transferred mitochondrial copies in what we believe are the first described cases of mitochondrial-to-nuclear gene conversion. We show that rpl5 underwent a retroprocessing event within the mitochondrial genome early in the evolution of the grass family, which we argue predisposed the gene towards successful, DNA-mediated functional transfer by generating a "pre-edited" sequence.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/genética , Poaceae/genética , Sequência de Aminoácidos/genética , Núcleo Celular/genética , Evolução Molecular , Conversão Gênica/genética , Genes Mitocondriais/genética , Genes de Plantas , Genoma Mitocondrial , Magnoliopsida/genética , Filogenia , Proteínas de Plantas/genética , Pseudogenes/genética , Edição de RNA , Proteínas Ribossômicas/genética , Homologia de Sequência de Aminoácidos
3.
Environ Microbiol ; 18(5): 1364-78, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26058415

RESUMO

Scorpions are considered 'living fossils' that have conserved ancestral anatomical features and have adapted to numerous habitats. However, their gut microbiota diversity has not been studied. Here, we characterized the gut microbiota of two scorpion species, Vaejovis smithi and Centruroides limpidus. Our results indicate that scorpion gut microbiota is species-specific and that food deprivation reduces bacterial diversity. 16S rRNA gene phylogenetic analysis revealed novel bacterial lineages showing a low level of sequence identity to any known bacteria. Furthermore, these novel bacterial lineages were each restricted to a different scorpion species. Additionally, our results of the predicted metagenomic profiles revealed a core set of pathways that were highly abundant in both species, and mostly related to amino acid, carbohydrate, vitamin and cofactor metabolism. Notably, the food-deprived V. smithi shotgun metagenome matched almost completely the metabolic features of the prediction. Finally, comparisons among predicted metagenomic profiles showed that toxic compound degradation pathways were more abundant in recently captured C. limpidus scorpions. This study gives a first insight into the scorpion gut microbiota and provides a reference for future studies on the gut microbiota from other arachnid species.


Assuntos
Bactérias/classificação , Microbioma Gastrointestinal , Escorpiões/microbiologia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Biodiversidade , Privação de Alimentos , Microbioma Gastrointestinal/genética , Inativação Metabólica , Redes e Vias Metabólicas , Metagenoma , Metagenômica , Filogenia , RNA Ribossômico 16S/genética , Especificidade da Espécie
4.
Parasitol Res ; 115(11): 4153-4165, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27492201

RESUMO

Here we report the presence of the entomopathogenic nematode Rhabditis (Rhabditoides) regina affecting white grubs (Phyllophaga sp. and Anomala sp.) in Mexico and R. regina-associated bacteria. Bioassays were performed to test the entomopathogenic capacity of dauer and L2 and L3 (combined) larval stages. Furthermore, we determined the diversity of bacteria from laboratory nematodes cultivated for 2 years (dauer and L2-L3 larvae) and from field nematodes (dauer and L2-L3 larvae) in addition to the virulence in Galleria mellonella larvae of some bacterial species from both laboratory and field nematodes. Dauer and non-dauer larvae of R. regina killed G. mellonella. Bacteria such as Serratia sp. (isolated from field nematodes) and Klebsiella sp. (isolated from larvae of laboratory and field nematodes) may explain R. regina entomopathogenic capabilities. Different bacteria were found in nematodes after subculturing in the laboratory suggesting that R. regina may acquire bacteria in different environments. However, there were some consistently found bacteria from laboratory and field nematodes such as Pseudochrobactrum sp., Comamonas sp., Alcaligenes sp., Klebsiella sp., Acinetobacter sp., and Leucobacter sp. that may constitute the nematode microbiome. Results showed that some bacteria contributing to entomopathogenicity may be lost in the laboratory representing a disadvantage when nematodes are cultivated to be used for biological control.


Assuntos
Bactérias/isolamento & purificação , Besouros/parasitologia , Microbiota , Mariposas/parasitologia , Rhabditoidea/microbiologia , Animais , Bactérias/genética , Bactérias/patogenicidade , Klebsiella/genética , Klebsiella/isolamento & purificação , Klebsiella/patogenicidade , Larva , México , Filogenia , Análise de Sequência de DNA , Serratia/genética , Serratia/isolamento & purificação , Serratia/patogenicidade , Virulência
5.
Syst Appl Microbiol ; 47(5): 126540, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39068732

RESUMO

We present new genomes from the bacterial symbiont Candidatus Dactylopiibacterium carminicum obtained from non-domesticated carmine cochineals belonging to the scale insect Dactylopius (Hemiptera: Coccoidea: Dactylopiidae). As Dactylopiibacterium has not yet been cultured in the laboratory, metagenomes and metatranscriptomics have been key in revealing putative symbiont functions. Dactylopiibacterium is a nitrogen-fixing beta-proteobacterium that may be vertically transmitted and shows differential gene expression inside the cochineal depending on the tissue colonized. Here we found that all cochineal species tested had Dactylopiibacterium carminicum which has a highly conserved genome. All Dactylopiibacterium genomes analyzed had genes involved in nitrogen fixation and plant polymer degradation. Dactylopiibacterium genomes resemble those from free-living plant bacteria, some found as endophytes. Notably, we found here a new putative novel function where the bacteria may protect the insect from viruses, since all Dactylopiibacterium genomes contain CRISPRs with a spacer matching nucleopolyhedrovirus that affects insects.


Assuntos
Sistemas CRISPR-Cas , Genoma Bacteriano , Hemípteros , Simbiose , Hemípteros/microbiologia , Hemípteros/virologia , Animais , Genoma Bacteriano/genética , Genômica , Filogenia , Fixação de Nitrogênio
6.
Appl Environ Microbiol ; 79(1): 2-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23104406

RESUMO

Animal guts and plant roots have absorption roles for nutrient uptake and converge in harboring large, complex, and dynamic groups of microbes that participate in degradation or modification of nutrients and other substances. Gut and root bacteria regulate host gene expression, provide metabolic capabilities, essential nutrients, and protection against pathogens, and seem to share evolutionary trends.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Biota , Trato Gastrointestinal/microbiologia , Raízes de Plantas/microbiologia , Animais
7.
Syst Appl Microbiol ; 46(4): 126433, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37207476

RESUMO

Inga vera and Lysiloma tree legumes form nodules with Bradyrhizobium spp. from the japonicum group that represent novel genomospecies, for which we describe here using genome data, symbiovars lysilomae, lysilomaefficiens and ingae. Genes encoding Type three secretion system (TTSS) that could affect host specificity were found in ingae but not in lysilomae nor in lysilomaefficiens symbiovars and uptake hydrogenase hup genes (that affect nitrogen fixation) were observed in bradyrhizobia from the symbiovars ingae and lysilomaefficiens. nolA gene was found in the symbiovar lysilomaefficiens but not in strains from lysilomae. We discuss that multiple genes may dictate symbiosis specificity. Besides, toxin-antitoxin genes were found in the symbiosis islands in bradyrhizobia from symbiovars ingae and lysilomaefficiens. A limit (95%) to define symbiovars with nifH gene sequences was proposed here.


Assuntos
Bradyrhizobium , Fabaceae , Bradyrhizobium/genética , Nódulos Radiculares de Plantas , Filogenia , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Simbiose/genética , Análise de Sequência de DNA
8.
Plasmid ; 68(3): 149-58, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22813963

RESUMO

In bacteria, niche adaptation may be determined by mobile extrachromosomal elements. A remarkable characteristic of Rhizobium and Ensifer (Sinorhizobium) but also of Agrobacterium species is that almost half of the genome is contained in several large extrachromosomal replicons (ERs). They encode a plethora of functions, some of them required for bacterial survival, niche adaptation, plasmid transfer or stability. In spite of this, plasmid loss is common in rhizobia upon subculturing. Rhizobial gene-expression studies in plant rhizospheres with novel results from transcriptomic analysis of Rhizobium phaseoli in maize and Phaseolus vulgaris roots highlight the role of ERs in natural niches and allowed the identification of common extrachromosomal genes expressed in association with plant rootlets and the replicons involved.


Assuntos
Raízes de Plantas/genética , Plasmídeos , Rhizobium , Agrobacterium/genética , Agrobacterium/metabolismo , Herança Extracromossômica , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Phaseolus/microbiologia , Plasmídeos/genética , Plasmídeos/metabolismo , RNA Ribossômico 16S , Replicon , Rhizobium/genética , Rhizobium/metabolismo , Rizosfera , Análise de Sequência de DNA , Sinorhizobium/genética , Sinorhizobium/metabolismo , Zea mays/microbiologia
9.
J Evol Biol ; 25(11): 2357-68, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22994649

RESUMO

Flavobacteria and Enterobacteriaceae have been previously reported as scale insect endosymbionts. The purpose of this work was twofold: first, to screen different scale insect families for the presence of these endosymbionts by PCR analyses and second, to elucidate the history of cophylogeny between these bacteria and the insects by analysing a portion of 16S rRNA and 18S rRNA gene sequences by two reconciliation tools, CoRe-PA and Jane. From a survey of 27 scale insects within seven families, we identified Flavobacteria and Enterobacteriaceae as coexisting in ten species that belong to the Ortheziidae, Monophlebidae, Diaspididae and Coccidae families, and we frequently found two closely related enterobacteria harboured in the same individual. Analyses performed with CoRe-PA and Jane suggest that Flavobacteria from the scale insects analysed have a unique origin, except for Candidatus Brownia rhizoecola (Flavobacteria of Pseudococcidae, Phenacoccinae), which seems to come from a nonscale insect. Nevertheless, cospeciation between Flavobacteria and scale insects is suggested only within the families Monophlebidae, Ortheziidae and Diaspididae, and host switches seem to have occurred from the ancestors of Monophlebidae and Ortheziidae to insects from families Coccidae, Lecanodiaspididae, Eriococcidae and Pseudococcidae. Our analyses suggest that Enterobacteriaceae underwent more evolutionary events (losses, duplications and host switches), and their phylogenies showed a lower proportion of congruent nodes between host and bacteria, indicating a more relaxed relationship with scale insects compared with Flavobacteria.


Assuntos
Evolução Biológica , Enterobacteriaceae/crescimento & desenvolvimento , Flavobacterium/crescimento & desenvolvimento , Hemípteros/microbiologia , Simbiose , Animais , Clonagem Molecular , DNA Bacteriano/genética , Enterobacteriaceae/classificação , Enterobacteriaceae/genética , Feminino , Flavobacterium/classificação , Flavobacterium/genética , Genes de Insetos , Especiação Genética , Hemípteros/genética , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , Alinhamento de Sequência , Análise de Sequência de DNA
10.
Syst Appl Microbiol ; 45(6): 126358, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36174465

RESUMO

Scorpions were among the first animals on land around 430 million years ago. Like many arachnids, scorpions have evolved complex venoms used to paralyze their prey and for self-defense. Here we sequenced and analyzed the metagenomic DNA from venom glands from Vaejovis smithi scorpions. A metagenome-assembled genome (MAG) of 624,025 bp was obtained corresponding to the previously reported Scorpion Group 1 (SG1). The SG1 genome from venom glands had a low GC content (25.8%) characteristic of reduced genomes, many hypothetical genes and genes from the reported minimal set of bacterial genes. Phylogenomic reconstructions placed the uncultured SG1 distant from other reported bacteria constituting a taxonomic novelty. By PCR we detected SG1 in all tested venom glands from 30 independent individuals. Microscopically, we observed SG1 inside epithelial cells from the venom glands using FISH and its presence in scorpion embryos suggested that SG1 is transferred from mother to offspring.


Assuntos
Bactérias , Escorpiões , Animais , Escorpiões/genética , Escorpiões/microbiologia , RNA Ribossômico 16S/genética , Filogenia , Bactérias/genética , Metagenômica
11.
Front Microbiol ; 12: 740818, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777287

RESUMO

Corn and common bean have been cultivated together in Mesoamerica for thousands of years in an intercropping system called "milpa," where the roots are intermingled, favoring the exchange of their microbiota, including symbionts such as rhizobia. In this work, we studied the genomic expression of Rhizobium phaseoli Ch24-10 (by RNA-seq) after a 2-h treatment in the presence of root exudates of maize and bean grown in monoculture and milpa system under hydroponic conditions. In bean exudates, rhizobial genes for nodulation and degradation of aromatic compounds were induced; while in maize, a response of genes for degradation of mucilage and ferulic acid was observed, as well as those for the transport of sugars, dicarboxylic acids and iron. Ch24-10 transcriptomes in milpa resembled those of beans because they both showed high expression of nodulation genes; some genes that were expressed in corn exudates were also induced by the intercropping system, especially those for the degradation of ferulic acid and pectin. Beans grown in milpa system formed nitrogen-fixing nodules similar to monocultured beans; therefore, the presence of maize did not interfere with Rhizobium-bean symbiosis. Genes for the metabolism of sugars and amino acids, flavonoid and phytoalexin tolerance, and a T3SS were expressed in both monocultures and milpa system, which reveals the adaptive capacity of rhizobia to colonize both legumes and cereals. Transcriptional fusions of the putA gene, which participates in proline metabolism, and of a gene encoding a polygalacturonase were used to validate their participation in plant-microbe interactions. We determined the enzymatic activity of carbonic anhydrase whose gene was also overexpressed in response to root exudates.

12.
Microb Biotechnol ; 14(4): 1282-1299, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33320440

RESUMO

Health depends on the diet and a vegetal diet promotes health by providing fibres, vitamins and diverse metabolites. Remarkably, plants may also provide microbes. Fungi and bacteria that reside inside plant tissues (endophytes) seem better protected to survive digestion; thus, we investigated the reported evidence on the endophytic origin of some members of the gut microbiota in animals such as panda, koala, rabbits and tortoises and several herbivore insects. Data examined here showed that some members of the herbivore gut microbiota are common plant microbes, which derived to become stable microbiota in some cases. Endophytes may contribute to plant fibre or antimetabolite degradation and synthesis of metabolites with the plethora of enzymatic activities that they display; some may have practical applications, for example, Lactobacillus plantarum found in the intestinal tract, plants and in fermented food is used as a probiotic that may defend animals against bacterial and viral infections as other endophytic-enteric bacteria do. Clostridium that is an endophyte and a gut bacterium has remarkable capabilities to degrade cellulose by having cellulosomes that may be considered the most efficient nanomachines. Cellulose degradation is a challenge in animal digestion and for biofuel production. Other endophytic-enteric bacteria may have cellulases, pectinases, xylanases, tannases, proteases, nitrogenases and other enzymatic capabilities that may be attractive for biotechnological developments, indeed many endophytes are used to promote plant growth. Here, a cycle of endophytic-enteric-soil-endophytic microbes is proposed which has relevance for health and comprises the fate of animal faeces as natural microbial inoculants for plants that constitute bacterial sources for animal guts.


Assuntos
Endófitos , Herbivoria , Animais , Fungos , Desenvolvimento Vegetal , Plantas
13.
Life (Basel) ; 9(1)2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30609847

RESUMO

The scale insect Dactylopius coccus produces high amounts of carminic acid, which has historically been used as a pigment by pre-Hispanic American cultures. Nowadays carmine is found in food, cosmetics, and textiles. Metagenomic approaches revealed that Dactylopius spp. cochineals contain two Wolbachia strains, a betaproteobacterium named Candidatus Dactylopiibacterium carminicum and Spiroplasma, in addition to different fungi. We describe here a transcriptomic analysis indicating that Dactylopiibacterium is metabolically active inside the insect host, and estimate that there are over twice as many Dactylopiibacterium cells in the hemolymph than in the gut, with even fewer in the ovary. Albeit scarce, the transcripts in the ovaries support the presence of Dactylopiibacterium in this tissue and a vertical mode of transmission. In the cochineal, Dactylopiibacterium may catabolize plant polysaccharides, and be active in carbon and nitrogen provisioning through its degradative activity and by fixing nitrogen. In most insects, nitrogen-fixing bacteria are found in the gut, but in this study they are shown to occur in the hemolymph, probably delivering essential amino acids and riboflavin to the host from nitrogen substrates derived from nitrogen fixation.

14.
PLoS One ; 14(1): e0209588, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30625167

RESUMO

Scorpions are predator arachnids of ancient origin and worldwide distribution. Two scorpion species, Vaejovis smithi and Centruroides limpidus, were found to harbor two different Mollicutes phylotypes: a Scorpion Mycoplasma Clade (SMC) and Scorpion Group 1 (SG1). Here we investigated, using a targeted gene sequencing strategy, whether these Mollicutes were present in 23 scorpion morphospecies belonging to the Vaejovidae, Carboctonidae, Euscorpiidae, Diplocentridae, and Buthidae families. Our results revealed that SMC is found in a species-specific association with Vaejovidae and Buthidae, whereas SG1 is uniquely found in Vaejovidae. SMC and SG1 co-occur only in Vaejovis smithi where 43% of the individuals host both phylotypes. A phylogenetic analysis of Mollicutes 16S rRNA showed that SMC and SG1 constitute well-delineated phylotypes. Additionally, we found that SMC and scorpion phylogenies are significantly congruent, supporting the observation that a cospeciation process may have occurred. This study highlights the phylogenetic diversity of the scorpion associated Mollicutes through different species revealing a possible cospeciation pattern.


Assuntos
Mycoplasma/genética , RNA Ribossômico 16S/genética , Escorpiões/microbiologia , Animais , Marcação de Genes , Especificidade da Espécie
15.
Environ Microbiol ; 10(5): 1271-84, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18312393

RESUMO

Three transposon mutants of Rhizobium tropici CIAT899 affected in lipopolysaccharide (LPS) biosynthesis were characterized and their maize rhizosphere and endophytic root colonization abilities were evaluated. The disrupted genes coded for the following putative products: the ATPase component of an O antigen ABC-2 type transporter (wzt), a nucleotide-sugar dehydratase (lpsbeta2) and a bifunctional enzyme producing GDP-mannose (noeJ). Electrophoretic analysis of affinity purified LPS showed that all mutants lacked the smooth LPS bands indicating an O antigen minus phenotype. In the noeJ mutant, the rough LPS band migrated faster than the parental band, suggesting a truncated LPS core. When inoculated individually, the wzt and noeJ mutants colonize the rhizosphere and root to a lower extent than the parental strain while no differences were observed between the lpsbeta2 mutant and the parental strain. All mutants were impaired in competitive rhizosphere and root colonization. Pleiotropic effects of the mutations on known colonization traits such as motility and growth rate were observed, but they were not sufficient to explain the colonization behaviours. It was found that the LPS mutants were sensitive to the maize antimicrobial 6-methoxy-2-benzoxazolinone (MBOA). Only the combined effects of altered growth rate and susceptibility to maize antimicrobials could account for all the observed colonization phenotypes. The results suggest an involvement of the LPS in protecting R. tropici against maize defence response during rhizosphere and root colonization.


Assuntos
Proteínas de Bactérias/genética , Lipopolissacarídeos/biossíntese , Mutação , Raízes de Plantas/microbiologia , Rhizobium tropici/crescimento & desenvolvimento , Rhizobium tropici/genética , Microbiologia do Solo , Zea mays/microbiologia , Antibacterianos/farmacologia , Lipopolissacarídeos/química , Lipopolissacarídeos/isolamento & purificação , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Phaseolus/microbiologia , Rhizobium tropici/efeitos dos fármacos , Rhizobium tropici/metabolismo , Análise de Sequência de DNA
16.
Front Microbiol ; 9: 1794, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30140262

RESUMO

Cereals such as maize, rice, wheat and sorghum are the most important crops for human nutrition. Like other plants, cereals associate with diverse bacteria (including nitrogen-fixing bacteria called diazotrophs) and fungi. As large amounts of chemical fertilizers are used in cereals, it has always been desirable to promote biological nitrogen fixation in such crops. The quest for nitrogen fixation in cereals started long ago with the isolation of nitrogen-fixing bacteria from different plants. The sources of diazotrophs in cereals may be seeds, soils, and even irrigation water and diazotrophs have been found on roots or as endophytes. Recently, culture-independent molecular approaches have revealed that some rhizobia are found in cereal plants and that bacterial nitrogenase genes are expressed in plants. Since the levels of nitrogen-fixation attained with nitrogen-fixing bacteria in cereals are not high enough to support the plant's needs and never as good as those obtained with chemical fertilizers or with rhizobium in symbiosis with legumes, it has been the aim of different studies to increase nitrogen-fixation in cereals. In many cases, these efforts have not been successful. However, new diazotroph mutants with enhanced capabilities to excrete ammonium are being successfully used to promote plant growth as commensal bacteria. In addition, there are ambitious projects supported by different funding agencies that are trying to genetically modify maize and other cereals to enhance diazotroph colonization or to fix nitrogen or to form nodules with nitrogen-fixing symbiotic rhizobia.

17.
Genome Biol Evol ; 9(9): 2237-2250, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30605507

RESUMO

The domesticated carmine cochineal Dactylopius coccus (scale insect) has commercial value and has been used for more than 500 years for natural red pigment production. Besides the domesticated cochineal, other wild Dactylopius species such as Dactylopius opuntiae are found in the Americas, all feeding on nutrient poor sap from native cacti. To compensate nutritional deficiencies, many insects harbor symbiotic bacteria which provide essential amino acids or vitamins to their hosts. Here, we characterized a symbiont from the carmine cochineal insects, Candidatus Dactylopiibacterium carminicum (betaproteobacterium, Rhodocyclaceae family) and found it in D. coccus and in D. opuntiae ovaries by fluorescent in situ hybridization, suggesting maternal inheritance. Bacterial genomes recovered from metagenomic data derived from whole insects or tissues both from D. coccus and from D. opuntiae were around 3.6 Mb in size. Phylogenomics showed that dactylopiibacteria constituted a closely related clade neighbor to nitrogen fixing bacteria from soil or from various plants including rice and other grass endophytes. Metabolic capabilities were inferred from genomic analyses, showing a complete operon for nitrogen fixation, biosynthesis of amino acids and vitamins and putative traits of anaerobic or microoxic metabolism as well as genes for plant interaction. Dactylopiibacterium nif gene expression and acetylene reduction activity detecting nitrogen fixation were evidenced in D. coccus hemolymph and ovaries, in congruence with the endosymbiont fluorescent in situ hybridization location. Dactylopiibacterium symbionts may compensate for the nitrogen deficiency in the cochineal diet. In addition, this symbiont may provide essential amino acids, recycle uric acid, and increase the cochineal life span.


Assuntos
Hemípteros/microbiologia , Fixação de Nitrogênio , Rhodocyclaceae/classificação , Simbiose , Animais , Feminino , Genoma Bacteriano , Ovário/microbiologia , Filogenia , Rhodocyclaceae/isolamento & purificação
18.
Mol Plant Microbe Interact ; 19(8): 827-37, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16903349

RESUMO

Recent molecular studies on endophytic bacterial diversity have revealed a large richness of species. Endophytes promote plant growth and yield, suppress pathogens, may help to remove contaminants, solubilize phosphate, or contribute assimilable nitrogen to plants. Some endophytes are seedborne, but others have mechanisms to colonize the plants that are being studied. Bacterial mutants unable to produce secreted proteins are impaired in the colonization process. Plant genes expressed in the presence of endophytes provide clues as to the effects of endophytes in plants. Molecular analysis showed that plant defense responses limit bacterial populations inside plants. Some human pathogens, such as Salmonella spp., have been found as endophytes, and these bacteria are not removed by disinfection procedures that eliminate superficially occurring bacteria. Delivery of endophytes to the environment or agricultural fields should be carefully evaluated to avoid introducing pathogens.


Assuntos
Fenômenos Fisiológicos Bacterianos , Plantas/microbiologia , Simbiose , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Bactérias/patogenicidade , Biodiversidade , Microbiologia Ambiental , Fixação de Nitrogênio , Plantas/metabolismo
19.
Front Microbiol ; 7: 954, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27446001

RESUMO

We studied fungal species associated with the carmine cochineal Dactylopius coccus and other non-domesticated Dactylopius species using culture-dependent and -independent methods. Thirty seven fungi were isolated in various culture media from insect males and females from different developmental stages and Dactylopius species. 26S rRNA genes and ITS sequences, from cultured fungal isolates revealed different species of Cryptococcus, Rhodotorula, Debaryomyces, Trametes, and Penicillium, which are genera newly associated with Dactylopius. Uric acid (UA) and uricase activity were detected in tissues extracts from different insect developmental stages. However, accumulation of high UA levels and low uricase activities were found only after antifungal treatments, suggesting an important role of fungal species in its metabolism. Additionally, uricolytic fungal isolates were identified and characterized that presumably are involved in nitrogen recycling metabolism. After metagenomic analyses from D. coccus gut and hemolymph DNA and from two published data sets, we confirmed the presence of fungal genes involved in UA catabolism, suggesting that fungi help in the nitrogen recycling process in Dactylopius by uricolysis. All these results show the importance of fungal communities in scale insects such as Dactylopius.

20.
G3 (Bethesda) ; 6(10): 3343-3349, 2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27543297

RESUMO

Dactylopius species, known as cochineal insects, are the source of the carminic acid dye used worldwide. The presence of two Wolbachia strains in Dactylopius coccus from Mexico was revealed by PCR amplification of wsp and sequencing of 16S rRNA genes. A metagenome analysis recovered the genome sequences of Candidatus Wolbachia bourtzisii wDacA (supergroup A) and Candidatus Wolbachia pipientis wDacB (supergroup B). Genome read coverage, as well as 16S rRNA clone sequencing, revealed that wDacB was more abundant than wDacA. The strains shared similar predicted metabolic capabilities that are common to Wolbachia, including riboflavin, ubiquinone, and heme biosynthesis, but lacked other vitamin and cofactor biosynthesis as well as glycolysis, the oxidative pentose phosphate pathway, and sugar uptake systems. A complete tricarboxylic acid cycle and gluconeogenesis were predicted as well as limited amino acid biosynthesis. Uptake and catabolism of proline were evidenced in Dactylopius Wolbachia strains. Both strains possessed WO-like phage regions and type I and type IV secretion systems. Several efflux systems found suggested the existence of metal toxicity within their host. Besides already described putative virulence factors like ankyrin domain proteins, VlrC homologs, and patatin-like proteins, putative novel virulence factors related to those found in intracellular pathogens like Legionella and Mycobacterium are highlighted for the first time in Wolbachia Candidate genes identified in other Wolbachia that are likely involved in cytoplasmic incompatibility were found in wDacB but not in wDacA.


Assuntos
Genoma Bacteriano , Genômica , Hemípteros/microbiologia , Wolbachia/genética , Animais , Sistemas de Secreção Bacterianos/genética , Sistemas de Secreção Bacterianos/metabolismo , Transporte Biológico , Metabolismo Energético , Feminino , Variação Genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , RNA Bacteriano , RNA Ribossômico 16S , Estresse Fisiológico/genética , Simbiose , Fatores de Virulência , Wolbachia/classificação , Wolbachia/isolamento & purificação , Wolbachia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA