Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Neurobiol Dis ; 197: 106520, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38703861

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting 1 in 36 children and is associated with physiological abnormalities, most notably mitochondrial dysfunction, at least in a subset of individuals. This systematic review and meta-analysis discovered 204 relevant articles which evaluated biomarkers of mitochondrial dysfunction in ASD individuals. Significant elevations (all p < 0.01) in the prevalence of lactate (17%), pyruvate (41%), alanine (15%) and creatine kinase (9%) were found in ASD. Individuals with ASD had significant differences (all p < 0.01) with moderate to large effect sizes (Cohen's d' ≥ 0.6) compared to controls in mean pyruvate, lactate-to-pyruvate ratio, ATP, and creatine kinase. Some studies found abnormal TCA cycle metabolites associated with ASD. Thirteen controlled studies reported mitochondrial DNA (mtDNA) deletions or variations in the ASD group in blood, peripheral blood mononuclear cells, lymphocytes, leucocytes, granulocytes, and brain. Meta-analyses discovered significant differences (p < 0.01) in copy number of mtDNA overall and in ND1, ND4 and CytB genes. Four studies linked specific mtDNA haplogroups to ASD. A series of studies found a subgroup of ASD with elevated mitochondrial respiration which was associated with increased sensitivity of the mitochondria to physiological stressors and neurodevelopmental regression. Lactate, pyruvate, lactate-to-pyruvate ratio, carnitine, and acyl-carnitines were associated with clinical features such as delays in language, social interaction, cognition, motor skills, and with repetitive behaviors and gastrointestinal symptoms, although not all studies found an association. Lactate, carnitine, acyl-carnitines, ATP, CoQ10, as well as mtDNA variants, heteroplasmy, haplogroups and copy number were associated with ASD severity. Variability was found across biomarker studies primarily due to differences in collection and processing techniques as well as the intrinsic heterogeneity of the ASD population. Several studies reported alterations in mitochondrial metabolism in mothers of children with ASD and in neonates who develop ASD. Treatments targeting mitochondria, particularly carnitine and ubiquinol, appear beneficial in ASD. The link between mitochondrial dysfunction in ASD and common physiological abnormalities in individuals with ASD including gastrointestinal disorders, oxidative stress, and immune dysfunction is outlined. Several subtypes of mitochondrial dysfunction in ASD are discussed, including one related to neurodevelopmental regression, another related to alterations in microbiome metabolites, and another related to elevations in acyl-carnitines. Mechanisms linking abnormal mitochondrial function with alterations in prenatal brain development and postnatal brain function are outlined. Given the multisystem complexity of some individuals with ASD, this review presents evidence for the mitochondria being central to ASD by contributing to abnormalities in brain development, cognition, and comorbidities such as immune and gastrointestinal dysfunction as well as neurodevelopmental regression. A diagnostic approach to identify mitochondrial dysfunction in ASD is outlined. From this evidence, it is clear that many individuals with ASD have alterations in mitochondrial function which may need to be addressed in order to achieve optimal clinical outcomes. The fact that alterations in mitochondrial metabolism may be found during pregnancy and early in the life of individuals who eventually develop ASD provides promise for early life predictive biomarkers of ASD. Further studies may improve the understanding of the role of the mitochondria in ASD by better defining subgroups and understanding the molecular mechanisms driving some of the unique changes found in mitochondrial function in those with ASD.


Assuntos
Transtorno do Espectro Autista , Biomarcadores , Humanos , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Biomarcadores/metabolismo , DNA Mitocondrial/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/genética
2.
J Pers Med ; 14(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38248763

RESUMO

Autism spectrum disorder (ASD) affects up to 1 in 36 children in the United States. It is a heterogeneous neurodevelopmental disorder with life-long consequences. Patients with ASD and folate pathway abnormalities have demonstrated improved symptoms after treatment with leucovorin (folinic acid), a reduced form of folate. However, biomarkers for treatment response have not been well investigated and clinical trials are lacking. In this retrospective analysis, a cohort of prospectively collected data from 110 consecutive ASD clinic patients [mean (SD) age: 10.5 (6.2) years; 74% male] was examined. These patients all underwent testing for folate receptor alpha autoantibodies (FRAAs) and soluble folate binding proteins (sFBPs) biomarkers and were treated with leucovorin, if appropriate. Analyses examined whether these biomarkers could predict response to leucovorin treatment as well as the severity of ASD characteristics at baseline. The social responsiveness scale (SRS), a measure of core ASD symptoms, and the aberrant behavior checklist (ABC), a measure of disruptive behavior, were collected at each clinic visit. Those positive for sFBPs had more severe ASD symptoms, and higher binding FRAA titers were associated with greater ABC irritability. Treatment with leucovorin improved most SRS subscales with higher binding FRAA titers associated with greater response. Leucovorin treatment also improved ABC irritability. These results confirm and expand on previous studies, underscore the need for biomarkers to guide treatment of folate pathways in ASD, and suggest that leucovorin may be effective for children with ASD.

3.
J Pers Med ; 13(7)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37511780

RESUMO

Despite the high prevalence of epilepsy in individuals with autism spectrum disorder (ASD), there is little information regarding whether seizure characteristics and treatment effectiveness change across age. Using an online survey, seizure characteristics, effectiveness of antiepileptic treatments, comorbidities, potential etiologies, and ASD diagnosis were collected from individuals with ASD and seizures. We previously reported overall general patterns of treatment effectiveness but did not examine the effect of seizure characteristics or age on antiepileptic treatment effectiveness. Such information would improve the personalized medicine approach to the treatment of seizures in ASD. Survey data from 570 individuals with ASD and clinical seizures were analyzed. Seizure severity (seizure/week) decreased with age of onset of seizures, plateauing in adolescence, with a greater reduction in generalized tonic-clonic (GTC) seizures with age. Seizure severity was worse in those with genetic disorders, neurodevelopmental regression (NDR) and poor sleep maintenance. Carbamazepine and oxcarbazepine were reported to be more effective when seizures started in later childhood, while surgery and the Atkins/modified Atkins Diet (A/MAD) were reported to be more effective when seizures started early in life. A/MAD and the ketogenic diet were reported to be more effective in those with NDR. Interestingly, atypical Landau-Kleffner syndrome was associated with mitochondrial dysfunction and NDR, suggesting a novel syndrome. These interesting findings need to be verified in independent, prospectively collected cohorts, but nonetheless, these data provide insights into novel relationships that may assist in a better understanding of epilepsy in ASD and provide insight into personalizing epilepsy care in ASD.

4.
J Pers Med ; 13(2)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36836486

RESUMO

Children with autism spectrum disorder may exhibit nutritional deficiencies due to reduced intake, genetic variants, autoantibodies interfering with vitamin transport, and the accumulation of toxic compounds that consume vitamins. Importantly, vitamins and metal ions are essential for several metabolic pathways and for neurotransmitter functioning. The therapeutic benefits of supplementing vitamins, minerals (Zinc, Magnesium, Molybdenum, and Selenium), and other cofactors (coenzyme Q10, alpha-lipoic acid, and tetrahydrobiopterin) are mediated through their cofactor as well as non-cofactor functions. Interestingly, some vitamins can be safely administered at levels far above the dose typically used to correct the deficiency and exert effects beyond their functional role as enzyme cofactors. Moreover, the interrelationships between these nutrients can be leveraged to obtain synergistic effects using combinations. The present review discusses the current evidence for using vitamins, minerals, and cofactors in autism spectrum disorder, the rationale behind their use, and the prospects for future use.

6.
J Pers Med ; 12(2)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35207636

RESUMO

The most recent Center for Disease Control and Prevention estimates suggest that 1 in every 44 children (>2%) in the United States (US) is affected by autism spectrum disorder (ASD) [...].

7.
J Pers Med ; 12(11)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36579544

RESUMO

COVID-19 causes not only severe respiratory symptoms, but also long-term sequelae, even if the acute-phase symptoms are minor. Neurological and neuropsychiatric symptoms are emerging as major long-term sequalae. In patients with pre-existing behavioral symptoms, such as individuals with autism spectrum disorders (ASD), the emergence of neuropsychiatric symptoms due to long COVID can be difficult to diagnose and manage. Herein, we present three ASD cases who presented with markedly worsening neuropsychiatric symptoms following COVID-19 exposure and subsequent difficulty in managing the post-COVID neuropsychiatric symptoms. Case 1 contracted SARS-CoV-2 during the early stages of the pandemic and treatment targeting COVID-19-induced immune activation was delayed. Case 2 was asymptomatic in the acute stage of a confirmed COVID-19 exposure, but still developed significant neuropsychiatric symptoms. Case 3 demonstrated a difficult course, partly due to pre-existing immune dysregulation and prior use of multiple immunomodulating agents. In cases 1 and 3 for whom serial blood samples were obtained, notable changes in the production of inflammatory and counter-regulatory cytokines by peripheral blood monocytes were observed. The presented cases illustrate the profound effects of COVID-19 on neuropsychiatric symptoms in ASD subjects and the difficulty of managing long-COVID symptoms.

8.
J Pers Med ; 12(12)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36556254

RESUMO

Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder with life-long consequences that affects up to 1 in 44 children. Treatment with leucovorin (folinic acid), a reduced form of folate, has been shown to improve symptoms in those with ASD and folate pathway abnormalities in controlled clinical trials. Although soluble folate binding proteins (sFBPs) have been observed in the serum of some patients with ASD, the significance of this finding has not been studied. Here, we present a cohort of ASD patients with sFBPs. These patients had severe ASD and were medically complex. Using baseline controlled open-label methodology and standardized assessments, these patients were found to improve in both core and associated ASD symptoms with leucovorin treatment. No adverse effects were related to leucovorin treatment. This is the first report of the sFBPs in ASD. This study complements ongoing controlled clinical trials and suggests that leucovorin may be effective for children with ASD who are positive for sFBPs. Further, sFBPs might be important biomarkers for treatment response to leucovorin in children with ASD. This study paves the way for further controlled studies for patients with sFBPs.

9.
Pediatr Res ; 69(5 Pt 2): 41R-7R, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21289536

RESUMO

Autism spectrum disorder (ASD) is a devastating neurodevelopmental disorder. Over the past decade, evidence has emerged that some children with ASD suffer from undiagnosed comorbid medical conditions. One of the medical disorders that has been consistently associated with ASD is mitochondrial dysfunction. Individuals with mitochondrial disorders without concomitant ASD manifest dysfunction in multiple high-energy organ systems, such as the central nervous, muscular, and gastrointestinal (GI) systems. Interestingly, these are the identical organ systems affected in a significant number of children with ASD. This finding increases the possibility that mitochondrial dysfunction may be one of the keys that explains the many diverse symptoms observed in some children with ASD. This article will review the importance of mitochondria in human health and disease, the evidence for mitochondrial dysfunction in ASD, the potential role of mitochondrial dysfunction in the comorbid medical conditions associated with ASD, and how mitochondrial dysfunction can bridge the gap for understanding how these seemingly disparate medical conditions are related. We also review the limitations of this evidence and other possible explanations for these findings. This new understanding of ASD should provide researchers a pathway for understanding the etiopathogenesis of ASD and clinicians the potential to develop medical therapies.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/fisiopatologia , Mitocôndrias/fisiologia , Criança , Humanos
10.
Dev Med Child Neurol ; 53(9): 783-792, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21518346

RESUMO

AIM: The aim of this study was to investigate melatonin-related findings in autism spectrum disorders (ASD), including autistic disorder, Asperger syndrome, Rett syndrome, and pervasive developmental disorders, not otherwise specified. METHOD: Comprehensive searches were conducted in the PubMed, Google Scholar, CINAHL, EMBASE, Scopus, and ERIC databases from their inception to October 2010. Two reviewers independently assessed 35 studies that met the inclusion criteria. Of these, meta-analysis was performed on five randomized double-blind, placebo-controlled studies, and the quality of these trials was assessed using the Downs and Black checklist. RESULTS: Nine studies measured melatonin or melatonin metabolites in ASD and all reported at least one abnormality, including an abnormal melatonin circadian rhythm in four studies, below average physiological levels of melatonin and/or melatonin derivates in seven studies, and a positive correlation between these levels and autistic behaviors in four studies. Five studies reported gene abnormalities that could contribute to decreased melatonin production or adversely affect melatonin receptor function in a small percentage of children with ASD. Six studies reported improved daytime behavior with melatonin use. Eighteen studies on melatonin treatment in ASD were identified; these studies reported improvements in sleep duration, sleep onset latency, and night-time awakenings. Five of these studies were randomized double-blind, placebo-controlled crossover studies; two of the studies contained blended samples of children with ASD and other developmental disorders, but only data for children with ASD were used in the meta-analysis. The meta-analysis found significant improvements with large effect sizes in sleep duration (73 min compared with baseline, Hedge's g 1.97 [95% confidence interval {CI} CI 1.10-2.84], Glass's Δ 1.54 [95% CI 0.64-2.44]; 44 min compared with placebo, Hedge's g 1.07 [95% CI 0.49-1.65], Glass's Δ 0.93 [95% CI 0.33-1.53]) and sleep onset latency (66 min compared with baseline, Hedge's g-2.42 [95% CI -1.67 to -3.17], Glass's Δ-2.18 [95% CI -1.58 to -2.76]; 39 min compared with placebo, Hedge's g-2.46 [95% CI -1.96 to -2.98], Glass's Δ-1.28 [95% CI -0.67 to -1.89]) but not in night-time awakenings. The effect size varied significantly across studies but funnel plots did not indicate publication bias. The reported side effects of melatonin were minimal to none. Some studies were affected by limitations, including small sample sizes and variability in the protocols that measured changes in sleep parameters. INTERPRETATION: Melatonin administration in ASD is associated with improved sleep parameters, better daytime behavior, and minimal side effects. Additional studies of melatonin would be helpful to confirm and expand on these findings.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/tratamento farmacológico , Transtornos Globais do Desenvolvimento Infantil/metabolismo , Melatonina/metabolismo , Melatonina/uso terapêutico , Criança , Pré-Escolar , Bases de Dados Factuais/estatística & dados numéricos , Método Duplo-Cego , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto/estatística & dados numéricos
11.
J Pers Med ; 11(6)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070826

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting approximately 2% of children in the United States. Growing evidence suggests that immune dysregulation is associated with ASD. One immunomodulatory treatment that has been studied in ASD is intravenous immunoglobulins (IVIG). This systematic review and meta-analysis examined the studies which assessed immunoglobulin G (IgG) concentrations and the therapeutic use of IVIG for individuals with ASD. Twelve studies that examined IgG levels suggested abnormalities in total IgG and IgG 4 subclass concentrations, with concentrations in these IgGs related to aberrant behavior and social impairments, respectively. Meta-analysis supported possible subsets of children with ASD with low total IgG and elevated IgG 4 subclass but also found significant variability among studies. A total of 27 publications reported treating individuals with ASD using IVIG, including four prospective, controlled studies (one was a double-blind, placebo-controlled study); six prospective, uncontrolled studies; 2 retrospective, controlled studies; and 15 retrospective, uncontrolled studies. In some studies, clinical improvements were observed in communication, irritability, hyperactivity, cognition, attention, social interaction, eye contact, echolalia, speech, response to commands, drowsiness, decreased activity and in some cases, the complete resolution of ASD symptoms. Several studies reported some loss of these improvements when IVIG was stopped. Meta-analysis combining the aberrant behavior checklist outcome from two studies demonstrated that IVIG treatment was significantly associated with improvements in total aberrant behavior and irritability (with large effect sizes), and hyperactivity and social withdrawal (with medium effect sizes). Several studies reported improvements in pro-inflammatory cytokines (including TNF-alpha). Six studies reported improvements in seizures with IVIG (including patients with refractory seizures), with one study reporting a worsening of seizures when IVIG was stopped. Other studies demonstrated improvements in recurrent infections, appetite, weight gain, neuropathy, dysautonomia, and gastrointestinal symptoms. Adverse events were generally limited but included headaches, vomiting, worsening behaviors, anxiety, fever, nausea, fatigue, and rash. Many studies were limited by the lack of standardized objective outcome measures. IVIG is a promising and potentially effective treatment for symptoms in individuals with ASD; further research is needed to provide solid evidence of efficacy and determine the subset of children with ASD who may best respond to this treatment as well as to investigate biomarkers which might help identify responsive candidates.

12.
J Pers Med ; 11(11)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34834493

RESUMO

The cerebral folate receptor alpha (FRα) transports 5-methyltetrahydrofolate (5-MTHF) into the brain; low 5-MTHF in the brain causes cerebral folate deficiency (CFD). CFD has been associated with autism spectrum disorders (ASD) and is treated with d,l-leucovorin (folinic acid). One cause of CFD is an autoantibody that interferes with the function of the FRα. FRα autoantibodies (FRAAs) have been reported in ASD. A systematic review was performed to identify studies reporting FRAAs in association with ASD, or the use of d,l-leucovorin in the treatment of ASD. A meta-analysis examined the prevalence of FRAAs in ASD. The pooled prevalence of ASD in individuals with CFD was 44%, while the pooled prevalence of CFD in ASD was 38% (with a significant variation across studies due to heterogeneity). The etiology of CFD in ASD was attributed to FRAAs in 83% of the cases (with consistency across studies) and mitochondrial dysfunction in 43%. A significant inverse correlation was found between higher FRAA serum titers and lower 5-MTHF CSF concentrations in two studies. The prevalence of FRAA in ASD was 71% without significant variation across studies. Children with ASD were 19.03-fold more likely to be positive for a FRAA compared to typically developing children without an ASD sibling. For individuals with ASD and CFD, meta-analysis also found improvements with d,l-leucovorin in overall ASD symptoms (67%), irritability (58%), ataxia (88%), pyramidal signs (76%), movement disorders (47%), and epilepsy (75%). Twenty-one studies (including four placebo-controlled and three prospective, controlled) treated individuals with ASD using d,l-leucovorin. d,l-Leucovorin was found to significantly improve communication with medium-to-large effect sizes and have a positive effect on core ASD symptoms and associated behaviors (attention and stereotypy) in individual studies with large effect sizes. Significant adverse effects across studies were generally mild but the most common were aggression (9.5%), excitement or agitation (11.7%), headache (4.9%), insomnia (8.5%), and increased tantrums (6.2%). Taken together, d,l-leucovorin is associated with improvements in core and associated symptoms of ASD and appears safe and generally well-tolerated, with the strongest evidence coming from the blinded, placebo-controlled studies. Further studies would be helpful to confirm and expand on these findings.

13.
J Pers Med ; 11(8)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34442428

RESUMO

Autism spectrum disorder (ASD) is a common neurodevelopmental disorder affecting 2% of children in the United States. Biochemical abnormalities associated with ASD include impaired methylation and sulphation capacities along with low glutathione (GSH) redox capacity. Potential treatments for these abnormalities include cobalamin (B12). This systematic review collates the studies using B12 as a treatment in ASD. A total of 17 studies were identified; 4 were double-blind, placebo-controlled studies (2 examined B12 injections alone and 2 used B12 in an oral multivitamin); 1 was a prospective controlled study; 6 were prospective, uncontrolled studies, and 6 were retrospective (case series and reports). Most studies (83%) used oral or injected methylcobalamin (mB12), while the remaining studies did not specify the type of B12 used. Studies using subcutaneous mB12 injections (including 2 placebo-controlled studies) used a 64.5-75 µg/kg/dose. One study reported anemia in 2 ASD children with injected cyanocobalamin that resolved with switching to injected mB12. Two studies reported improvements in markers of mitochondrial metabolism. A meta-analysis of methylation metabolites demonstrated decreased S-adenosylhomocysteine (SAH), and increased methionine, S-adenosylmethionine (SAM), SAM/SAH ratio, and homocysteine (with small effect sizes) with mB12. Meta-analysis of the transsulfuration and redox metabolism metabolites demonstrated significant improvements with mB12 in oxidized glutathione (GSSG), cysteine, total glutathione (GSH), and total GSH/GSSG redox ratio with medium to large effect sizes. Improvements in methylation capacity and GSH redox ratio were significantly associated with clinical improvements (with a mean moderate effect size of 0.59) in core and associated ASD symptoms, including expressive communication, personal and domestic daily living skills, and interpersonal, play-leisure, and coping social skills, suggesting these biomarkers may predict response to B12. Other clinical improvements observed with B12 included sleep, gastrointestinal symptoms, hyperactivity, tantrums, nonverbal intellectual quotient, vision, eye contact, echolalia, stereotypy, anemia, and nocturnal enuresis. Adverse events identified by meta-analysis included hyperactivity (11.9%), irritability (3.4%), trouble sleeping (7.6%), aggression (1.8%), and worsening behaviors (7.7%) but were generally few, mild, not serious, and not significantly different compared to placebo. In one study, 78% of parents desired to continue mB12 injections after the study conclusion. Preliminary clinical evidence suggests that B12, particularly subcutaneously injected mB12, improves metabolic abnormalities in ASD along with clinical symptoms. Further large multicenter placebo-controlled studies are needed to confirm these data. B12 is a promising treatment for ASD.

14.
J Pers Med ; 11(9)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34575655

RESUMO

Autism spectrum disorder (ASD) often involves a wide range of co-occurring medical conditions ("comorbidities") and biochemical abnormalities such as oxidative stress and mitochondrial dysfunction. Nutritional supplements ("Nutraceuticals") are often used to treat both core ASD symptoms and comorbidities, but some have not yet been formally evaluated in ASD. The potential biological mechanisms of nutraceuticals include correction of micronutrient deficiencies due to a poor diet and support for metabolic processes such as redox regulation, mitochondrial dysfunction and melatonin production. This paper reports on the results of the National Survey on Treatment Effectiveness for Autism, focusing on nutraceuticals. The Survey involved 1286 participants from across the United States. Participants rated the overall perceived benefits and adverse effects of each nutraceutical, and also indicated the specific symptoms changed and adverse effects. From these ratings the top-rated nutraceuticals for each of 24 symptoms are listed. Compared to psychiatric and seizure medications rated through the same Survey, on average nutraceuticals had significantly higher ratings of Overall Benefit (1.59 vs. 1.39, p = 0.01) and significantly lower ratings of Overall Adverse Effects (0.1 vs. 0.9, p < 0.001). Folinic acid and vitamin B12 were two of the top-rated treatments. This study suggests that nutraceuticals may have clinical benefits and favorable adverse effect profiles.

15.
Altern Med Rev ; 15(1): 15-32, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20359266

RESUMO

Autism spectrum disorders (ASD) and attention-deficit hyperactivity disorder (ADHD) are common and complex neurodevelopmental conditions. Diagnostic criteria for these conditions have traditionally relied solely on behavioral criteria without consideration for potential biomedical underpinnings. Newer evidence, however, reveals that ASDs are associated with: oxidative stress; decreased methylation capacity; limited production of glutathione; mitochondrial dysfunction; intestinal dysbiosis; increased toxic metal burden; immune dysregulation, characterized by a unique inflammatory bowel disease and immune activation of neuroglial cells; and ongoing brain hypoperfusion. Many of these same problems are common features in children with ADHD. These medical conditions, whether co-morbidities or etiopathogenic, would be expected to have synergistically negative effects on the development, cognition, focus, and attention of affected children. It is likely these biological abnormalities contribute significantly to the behavioral symptoms intrinsic in these diagnoses. However, treatment for these underlying medical disorders is clinically justified, even if no clear immediate behavioral improvements are observed. This article reviews the medical literature and discusses the authors clinical experience using various biomarkers for measuring oxidative stress, methylation capacity and transsulfuration, immune function, gastrointestinal problems, and toxic metal burden. These biomarkers provide useful guides for selection, efficacy, and sufficiency of biomedical interventions. The use of these biomarkers is of great importance in young children with ADHD or individuals of any age with ASD, because typically they cannot adequately communicate regarding their symptoms.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/etiologia , Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Biomarcadores/metabolismo , Transtornos Globais do Desenvolvimento Infantil/etiologia , Transtornos Globais do Desenvolvimento Infantil/metabolismo , Transtorno do Deficit de Atenção com Hiperatividade/complicações , Criança , Transtornos Globais do Desenvolvimento Infantil/complicações , Transtornos Globais do Desenvolvimento Infantil/prevenção & controle , Poluentes Ambientais/toxicidade , Feminino , Humanos , Inflamação/complicações , Inflamação/metabolismo , Enteropatias/complicações , Masculino , Metais Pesados/toxicidade , Doenças Mitocondriais/complicações , Estresse Oxidativo
16.
Semin Pediatr Neurol ; 35: 100835, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32892962

RESUMO

Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder that currently has no approved medical therapy to address core symptoms or underling pathophysiological processes. Several compounds are under development that address both underlying pathophysiological abnormalities and core ASD symptoms. This article reviews one of these treatments, d,l-leucovorin calcium (also known as folinic acid) for treatment of folate pathway abnormalities in children with ASD. Folate is a water-soluble B vitamin that is essential for normal neurodevelopment and abnormalities in the folate and related pathways have been identified in children with ASD. One of these abnormalities involves a partial blockage in the ability of folate to be transported into the brain utilizing the primary transport mechanism, the folate receptor alpha. Autoantibodies which interfere with the function of the folate receptor alpha called folate receptor alpha autoantibodies have been identified in 58%-76% of children with ASD and independent studies have demonstrated that blood titers of these autoantibodies correlate with folate levels in the cerebrospinal fluid. Most significantly, case-series, open-label, and single and double-blind placebo-controlled studies suggest that d,l-leucovorin, a reduced folate that can bypass the blockage at the folate receptor alpha by using the reduced folate carrier, an alternate pathway, can substantially improve particular symptoms in children with ASD, especially those positive for folate receptor alpha autoantibodies. This article reviews the current evidence for treating core and associated symptoms and underlying pathophysiological mechanisms in children with ASD with d,l-leucovorin.


Assuntos
Transtorno do Espectro Autista , Receptor 1 de Folato/imunologia , Deficiência de Ácido Fólico , Ácido Fólico , Leucovorina/farmacologia , Complexo Vitamínico B/farmacologia , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/imunologia , Transtorno do Espectro Autista/metabolismo , Autoanticorpos , Criança , Ácido Fólico/líquido cefalorraquidiano , Deficiência de Ácido Fólico/líquido cefalorraquidiano , Deficiência de Ácido Fólico/tratamento farmacológico , Humanos , Leucovorina/administração & dosagem , Complexo Vitamínico B/administração & dosagem
17.
Ann Clin Psychiatry ; 21(4): 213-36, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19917212

RESUMO

BACKGROUND: Currently, only one medication (risperidone) is FDA-approved for the treatment of autism spectrum disorders (ASD). Perhaps for this reason, the use of novel, unconventional, and off-label treatments for ASD is common, with up to 74% of children with ASD using these treatments; however, treating physicians are often unaware of this usage. METHODS: A systematic literature search of electronic scientific databases was performed to identify studies of novel and emerging treatments for ASD, including nutritional supplements, diets, medications, and nonbiological treatments. A grade of recommendation ("Grade") was then assigned to each treatment using a validated evidence-based guideline as outlined in this review: A: Supported by at least 2 prospective randomized controlled trials (RCTs) or 1 systematic review. B: Supported by at least 1 prospective RCT or 2 nonrandomized controlled trials. C: Supported by at least 1 nonrandomized controlled trial or 2 case series. D: Troublingly inconsistent or inconclusive studies or studies reporting no improvements. Potential adverse effects for each treatment were also reviewed. RESULTS: Grade A treatments for ASD include melatonin, acetylcholinesterase inhibitors, naltrexone, and music therapy. Grade B treatments include carnitine, tetrahydrobiopterin, vitamin C, alpha-2 adrenergic agonists, hyperbaric oxygen treatment, immunomodulation and anti-inflammatory treatments, oxytocin, and vision therapy. Grade C treatments for ASD include carnosine, multivitamin/mineral complex, piracetam, polyunsaturated fatty acids, vitamin B6/magnesium, elimination diets, chelation, cyproheptadine, famotidine, glutamate antagonists, acupuncture, auditory integration training, massage, and neurofeedback. CONCLUSIONS: The reviewed treatments for ASD are commonly used, and some are supported by prospective RCTs. Promising treatments include melatonin, antioxidants, acetylcholinesterase inhibitors, naltrexone, and music therapy. All of the reviewed treatments are currently considered off-label for ASD (ie, not FDA-approved) and some have adverse effects. Further studies exploring these treatments are needed. Physicians treating children with an ASD should make it standard practice to inquire about each child's possible use of these types of treatments.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/tratamento farmacológico , Transtornos Globais do Desenvolvimento Infantil/terapia , Antioxidantes/uso terapêutico , Criança , Transtornos Globais do Desenvolvimento Infantil/dietoterapia , Pré-Escolar , Inibidores da Colinesterase/uso terapêutico , Suplementos Nutricionais , Humanos , Melatonina/uso terapêutico , Musicoterapia , Naltrexona/uso terapêutico , Uso Off-Label , Ensaios Clínicos Controlados Aleatórios como Assunto
18.
BMC Pediatr ; 9: 21, 2009 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-19284641

RESUMO

BACKGROUND: Several uncontrolled studies of hyperbaric treatment in children with autism have reported clinical improvements; however, this treatment has not been evaluated to date with a controlled study. We performed a multicenter, randomized, double-blind, controlled trial to assess the efficacy of hyperbaric treatment in children with autism. METHODS: 62 children with autism recruited from 6 centers, ages 2-7 years (mean 4.92 +/- 1.21), were randomly assigned to 40 hourly treatments of either hyperbaric treatment at 1.3 atmosphere (atm) and 24% oxygen ("treatment group", n = 33) or slightly pressurized room air at 1.03 atm and 21% oxygen ("control group", n = 29). Outcome measures included Clinical Global Impression (CGI) scale, Aberrant Behavior Checklist (ABC), and Autism Treatment Evaluation Checklist (ATEC). RESULTS: After 40 sessions, mean physician CGI scores significantly improved in the treatment group compared to controls in overall functioning (p = 0.0008), receptive language (p < 0.0001), social interaction (p = 0.0473), and eye contact (p = 0.0102); 9/30 children (30%) in the treatment group were rated as "very much improved" or "much improved" compared to 2/26 (8%) of controls (p = 0.0471); 24/30 (80%) in the treatment group improved compared to 10/26 (38%) of controls (p = 0.0024). Mean parental CGI scores significantly improved in the treatment group compared to controls in overall functioning (p = 0.0336), receptive language (p = 0.0168), and eye contact (p = 0.0322). On the ABC, significant improvements were observed in the treatment group in total score, irritability, stereotypy, hyperactivity, and speech (p < 0.03 for each), but not in the control group. In the treatment group compared to the control group, mean changes on the ABC total score and subscales were similar except a greater number of children improved in irritability (p = 0.0311). On the ATEC, sensory/cognitive awareness significantly improved (p = 0.0367) in the treatment group compared to the control group. Post-hoc analysis indicated that children over age 5 and children with lower initial autism severity had the most robust improvements. Hyperbaric treatment was safe and well-tolerated. CONCLUSION: Children with autism who received hyperbaric treatment at 1.3 atm and 24% oxygen for 40 hourly sessions had significant improvements in overall functioning, receptive language, social interaction, eye contact, and sensory/cognitive awareness compared to children who received slightly pressurized room air. TRIAL REGISTRATION: clinicaltrials.gov NCT00335790.


Assuntos
Transtorno Autístico/terapia , Oxigenoterapia Hiperbárica , Transtorno Autístico/diagnóstico , Transtorno Autístico/fisiopatologia , Transtorno Autístico/psicologia , Criança , Pré-Escolar , Método Duplo-Cego , Feminino , Humanos , Oxigenoterapia Hiperbárica/métodos , Masculino , Escalas de Graduação Psiquiátrica , Resultado do Tratamento
19.
Mol Diagn Ther ; 22(5): 571-593, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30039193

RESUMO

Autism spectrum disorder (ASD) affects ~ 2% of children in the United States. The etiology of ASD likely involves environmental factors triggering physiological abnormalities in genetically sensitive individuals. One of these major physiological abnormalities is mitochondrial dysfunction, which may affect a significant subset of children with ASD. Here we systematically review the literature on human studies of mitochondrial dysfunction related to ASD. Clinical aspects of mitochondrial dysfunction in ASD include unusual neurodevelopmental regression, especially if triggered by an inflammatory event, gastrointestinal symptoms, seizures, motor delays, fatigue and lethargy. Traditional biomarkers of mitochondrial disease are widely reported to be abnormal in ASD, but appear non-specific. Newer biomarkers include buccal cell enzymology, biomarkers of fatty acid metabolism, non-mitochondrial enzyme function, apoptosis markers and mitochondrial antibodies. Many genetic abnormalities are associated with mitochondrial dysfunction in ASD, including chromosomal abnormalities, mitochondrial DNA mutations and large-scale deletions, and mutations in both mitochondrial and non-mitochondrial nuclear genes. Mitochondrial dysfunction has been described in immune and buccal cells, fibroblasts, muscle and gastrointestinal tissue and the brains of individuals with ASD. Several environmental factors, including toxicants, microbiome metabolites and an oxidized microenvironment are shown to modulate mitochondrial function in ASD tissues. Investigations of treatments for mitochondrial dysfunction in ASD are promising but preliminary. The etiology of mitochondrial dysfunction and how to define it in ASD is currently unclear. However, preliminary evidence suggests that the mitochondria may be a fruitful target for treatment and prevention of ASD. Further research is needed to better understand the role of mitochondrial dysfunction in the pathophysiology of ASD.


Assuntos
Transtorno do Espectro Autista/etiologia , Transtorno do Espectro Autista/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/terapia , Biomarcadores , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Meio Ambiente , Ácidos Graxos/metabolismo , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Predisposição Genética para Doença , Humanos , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/terapia , Estresse Fisiológico
20.
BMC Pediatr ; 7: 36, 2007 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-18005455

RESUMO

BACKGROUND: Recently, hyperbaric oxygen therapy (HBOT) has increased in popularity as a treatment for autism. Numerous studies document oxidative stress and inflammation in individuals with autism; both of these conditions have demonstrated improvement with HBOT, along with enhancement of neurological function and cognitive performance. In this study, children with autism were treated with HBOT at atmospheric pressures and oxygen concentrations in current use for this condition. Changes in markers of oxidative stress and inflammation were measured. The children were evaluated to determine clinical effects and safety. METHODS: Eighteen children with autism, ages 3-16 years, underwent 40 hyperbaric sessions of 45 minutes duration each at either 1.5 atmospheres (atm) and 100% oxygen, or at 1.3 atm and 24% oxygen. Measurements of C-reactive protein (CRP) and markers of oxidative stress, including plasma oxidized glutathione (GSSG), were assessed by fasting blood draws collected before and after the 40 treatments. Changes in clinical symptoms, as rated by parents, were also assessed. The children were closely monitored for potential adverse effects. RESULTS: At the endpoint of 40 hyperbaric sessions, neither group demonstrated statistically significant changes in mean plasma GSSG levels, indicating intracellular oxidative stress appears unaffected by either regimen. A trend towards improvement in mean CRP was present in both groups; the largest improvements were observed in children with initially higher elevations in CRP. When all 18 children were pooled, a significant improvement in CRP was found (p = 0.021). Pre- and post-parental observations indicated statistically significant improvements in both groups, including motivation, speech, and cognitive awareness (p < 0.05). No major adverse events were observed. CONCLUSION: In this prospective pilot study of children with autism, HBOT at a maximum pressure of 1.5 atm with up to 100% oxygen was safe and well tolerated. HBOT did not appreciably worsen oxidative stress and significantly decreased inflammation as measured by CRP levels. Parental observations support anecdotal accounts of improvement in several domains of autism. However, since this was an open-label study, definitive statements regarding the efficacy of HBOT for the treatment of individuals with autism must await results from double-blind, controlled trials. TRIAL REGISTRATION: clinicaltrials.gov NCT00324909.


Assuntos
Transtorno Autístico/terapia , Oxigenoterapia Hiperbárica , Adolescente , Proteína C-Reativa/análise , Criança , Pré-Escolar , Feminino , Glutationa/sangue , Dissulfeto de Glutationa/sangue , Humanos , Oxigenoterapia Hiperbárica/métodos , Masculino , Estresse Oxidativo , Projetos Piloto , Estudos Prospectivos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA