Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
3.
Exp Physiol ; 109(3): 322-323, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38156673

Assuntos
Oxigênio
4.
Med Sci Sports Exerc ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38465870

RESUMO

INTRODUCTION: Traditional neuromuscular fatigue assessments are not task-specific and are unable to characterize neuromuscular performance decline during dynamic whole-body exercise. This study used interleaved maximal isokinetic cycling efforts to characterize the dynamics of the decline in neuromuscular performance during ramp-incremental (RI) cycle ergometry exercise to intolerance. METHODS: Eleven young healthy participants (10 male/1 female) performed two RI cycle ergometry exercise tests to intolerance: [1] RI-exercise with peak isokinetic power (Piso) at 80 rev·min-1 measured at baseline and immediately at intolerance from a maximal ~6 s effort; [2] RI-exercise where additional Piso measurements were interleaved every 90 s to characterize the decline in neuromuscular performance during the RI-test. Muscle excitation was measured using EMG during all Piso assessments, and pulmonary gas exchange was measured throughout. RESULTS: Baseline Piso was 832 ± 140 W and RI-exercise reduced Piso to 349 ± 96 W at intolerance (p = 0.001), which was not different from flywheel power at intolerance (303 ± 96 W; p = 0.292). There was no reduction in Piso between baseline cycling and gas exchange threshold (GET; baseline Piso vs. mean Piso below GET: 828 ± 146 vs. 815 ± 149 W; p = 1.00). Piso fell progressively above GET until intolerance (Piso every 90 s above GET: 759 ± 139; 684 ± 141; 535 ± 144; 374 ± 117 W; each p < 0.05 vs. baseline and mean Piso below GET). Peak muscle excitation (EMG) was also reduced only above GET (73 ± 14 % of baseline, at intolerance; p < 0.05). However, the reduction in peak Piso preceded the reduction in peak muscle excitation. CONCLUSIONS: The dynamics of the decline in neuromuscular performance (reduction in Piso and EMG) during RI-exercise are consistent with known intensity-dependent metabolic and traditional pre-post neuromuscular fatigue responses to discrete bouts of constant-power exercise.

5.
Ann Am Thorac Soc ; 21(5): 727-739, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38109693

RESUMO

Rationale: A COPD Foundation working group sought to identify measures of exercise endurance, a meaningful aspect of physical functioning in everyday life among patients with chronic obstructive pulmonary disease (COPD) that is not fully accepted in regulatory decision making, hampering drug development. Objectives: To demonstrate, as we previously asserted (Casaburi COPD 2022;9:252), that constant work rate cycling endurance time is an appropriate exercise endurance measure in patients with COPD. Methods: To validate this assertion, we assembled an integrated database of endurance time responses, including 8 bronchodilator (2,166 subjects) and 15 exercise training (3,488 subjects) studies (Casaburi COPD 2022;9:520). Results: Construct validity was demonstrated: 1) peak physiologic and perceptual responses were similar for constant work rate and incremental cycling; 2) after bronchodilator therapy, there were greater increases in endurance time in patients with more severe airflow limitation; 3) after exercise training, endurance time increases were similar across airflow limitation severities; and 4) there were correlations between changes in endurance time and changes in mechanistically related physiologic and perceptual variables. Test-retest reliability was demonstrated, with consistency of changes in endurance time at two time points after the intervention. Responsiveness was confirmed, with significant increases in endurance time after active (but not placebo) bronchodilator therapy, with greater increases seen with more severe airflow limitation and after exercise training. On the basis of regression analysis using multiple anchor variables, the minimum important difference for endurance time increase is estimated to be approximately 1 minute. Conclusions: Constant work rate cycling endurance time is a valid exercise endurance measure in COPD, suitable for contributing to the evaluation of treatment benefit supporting regulatory decision making and evidence-based therapeutic recommendations.


Assuntos
Broncodilatadores , Resistência Física , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/terapia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Broncodilatadores/uso terapêutico , Reprodutibilidade dos Testes , Teste de Esforço/métodos , Tolerância ao Exercício/fisiologia , Volume Expiratório Forçado , Ensaios Clínicos como Assunto , Terapia por Exercício/métodos
6.
J Cachexia Sarcopenia Muscle ; 15(3): 1016-1029, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38649783

RESUMO

BACKGROUND: Skeletal muscle dysfunction is a common extrapulmonary manifestation of chronic obstructive pulmonary disease (COPD). Alterations in skeletal muscle myosin heavy chain expression, with reduced type I and increased type II myosin heavy chain expression, are associated with COPD severity when studied in largely male cohorts. The objectives of this study were (1) to define an abnormal myofibre proportion phenotype in both males and females with COPD and (2) to identify transcripts and transcriptional networks associated with abnormal myofibre proportion in COPD. METHODS: Forty-six participants with COPD were assessed for body composition, strength, endurance and pulmonary function. Skeletal muscle biopsies from the vastus lateralis were assayed for fibre-type distribution and cross-sectional area via immunofluorescence microscopy and RNA-sequenced to generate transcriptome-wide gene expression data. Sex-stratified k-means clustering of type I and IIx/IIax fibre proportions was used to define abnormal myofibre proportion in participants with COPD and contrasted with previously defined criteria. Single transcripts and weighted co-expression network analysis modules were tested for correlation with the abnormal myofibre proportion phenotype. RESULTS: Abnormal myofibre proportion was defined in males with COPD (n = 29) as <18% type I and/or >22% type IIx/IIax fibres and in females with COPD (n = 17) as <36% type I and/or >12% type IIx/IIax fibres. Half of the participants with COPD were classified as having an abnormal myofibre proportion. Participants with COPD and an abnormal myofibre proportion had lower median handgrip strength (26.1 vs. 34.0 kg, P = 0.022), 6-min walk distance (300 vs. 353 m, P = 0.039) and forced expiratory volume in 1 s-to-forced vital capacity ratio (0.42 vs. 0.48, P = 0.041) compared with participants with COPD and normal myofibre proportions. Twenty-nine transcripts were associated with abnormal myofibre proportions in participants with COPD, with the upregulated NEB, TPM1 and TPM2 genes having the largest fold differences. Co-expression network analysis revealed that two transcript modules were significantly positively associated with the presence of abnormal myofibre proportions. One of these co-expression modules contained genes classically associated with muscle atrophy, as well as transcripts associated with both type I and type II myofibres, and was enriched for genetic loci associated with bone mineral density. CONCLUSIONS: Our findings indicate that there are significant transcriptional alterations associated with abnormal myofibre proportions in participants with COPD. Transcripts canonically associated with both type I and type IIa fibres were enriched in a co-expression network associated with abnormal myofibre proportion, suggesting altered transcriptional regulation across multiple fibre types.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , Músculo Esquelético/metabolismo , Transcriptoma , Perfilação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA