Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biol Lett ; 16(5): 20200098, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32396788

RESUMO

Predators must often employ flexible strategies to capture prey. Particular attention has been given to the strategies of visual predators that actively pursue their prey, but sit-and-wait predators have been largely overlooked, their strategies often characterized as stereotyped. Praying mantids are primarily sit-and-wait predators that often employ crypsis to catch their prey using a raptorial strike produced by their highly modified forelimbs. Here, we show that the raptorial strike of the Madagascan marbled mantis (Polyspilota aeruginosa) varies in duration from 60 to 290 ms due to the tibial extension alone; slower strikes involve slower tibial extensions that may also be interrupted by a pause. The success of a strike is independent of its duration or the presence of these pauses. However, prey speed affects the duration of tibial extension and the probability of a pause occurring, both increasing at slower prey speeds. Adjusting the duration of the tibial extension according to prey speed allows mantids to time the final downward sweep of the tibia to their prey's approach. The use of visual inputs to adjust the motor pattern controlling forelimb movements shows that not all aspects of the strike are stereotyped and that sit-and-wait predators can produce behavioural flexibility.


Assuntos
Mantódeos , Comportamento Predatório , Animais
2.
Curr Biol ; 32(20): 4530-4537.e2, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36087580

RESUMO

The movements of animal appendages are determined by extrinsic and intrinsic forces. Extrinsic forces include gravity or friction,1,2 whereas intrinsic forces are generated by active muscle contraction or passive musculoskeletal elements.3,4 For lightweight appendages, such as insect limbs, movements depend more upon intrinsic than extrinsic forces.5,6 Indeed, passive movements of insect limbs can be large and oppose or aid joint flexion, extension, or both.4 Yet, how passive properties contribute to insects' goal-directed limb movements, such as targeted reaching and searching,7-10 remains unclear. Here, we show that mantids make targeted reaches and searches to objects by using their raptorial forelimbs, employing braking to slow passive flexion of the femoro-tibial (FTi) joint. In most reaches, tibial flexion ensures the forelimb contacts the object. Such tibial flexion is particularly clear when the forelimb misses the object and continues on a downward trajectory or during directed searching movements. We characterize the passive properties of the FTi joint by combining passive movements of excised limbs with apodeme ablations and muscle stimulation. These experiments show that passive properties of the flexor tibiae muscle-apodeme complex are the primary structural element producing tibial flexion in excised limbs. During reaching and searching, however, tibial flexion is slower and smaller than predicted. This is due to braking, which opposes passive flexion, thereby reducing the magnitude and velocity of tibial flexion. Braking retarding passive movements is a novel behaviorally relevant control strategy for the goal-directed movements of lightweight limbs, such as those of insects.


Assuntos
Objetivos , Movimento , Animais , Movimento/fisiologia , Contração Muscular/fisiologia , Extremidades/fisiologia , Músculo Esquelético/fisiologia , Insetos/fisiologia , Fenômenos Biomecânicos
3.
Sci Rep ; 8(1): 13629, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30206296

RESUMO

Reversible decreases in synaptic strength, known as short-term depression (STD), are widespread in neural circuits. Various computational roles have been attributed to STD but these tend to focus upon the initial depression rather than the subsequent recovery. We studied the role of STD and recovery at an excitatory synapse between the fast extensor tibiae (FETi) and flexor tibiae (flexor) motor neurons in the desert locust (Schistocerca gregaria) by making paired intracellular recordings in vivo. Over behaviorally relevant pre-synaptic spike frequencies, we found that this synapse undergoes matched frequency-dependent STD and recovery; higher frequency spikes that evoke stronger, faster STD also produce stronger, faster recovery. The precise matching of depression and recovery time constants at this synapse ensures that flexor excitatory post-synaptic potential (EPSP) amplitude encodes the presynaptic FETi interspike interval (ISI). Computational modelling shows that this precise matching enables the FETi-flexor synapse to linearly encode the ISI in the EPSP amplitude, a coding strategy that may be widespread in neural circuits.


Assuntos
Transtorno Depressivo/fisiopatologia , Membro Posterior/fisiologia , Neurônios Motores/fisiologia , Sinapses/fisiologia , Animais , Simulação por Computador , Gafanhotos/fisiologia , Humanos , Somação de Potenciais Pós-Sinápticos/fisiologia
4.
J R Soc Interface ; 15(147)2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30333249

RESUMO

When aiming to capture a fast-moving target, animals can follow it until they catch up, or try to intercept it. In principle, interception is the more complicated strategy, but also more energy efficient. To study whether simple feedback controllers can explain interception behaviours by animals with miniature brains, we have reconstructed and studied the predatory flights of the robber fly Holcocephala fusca and killer fly Coenosia attenuata Although both species catch other aerial arthropods out of the air, Holcocephala contrasts prey against the open sky, while Coenosia hunts against clutter and at much closer range. Thus, their solutions to this target catching task may differ significantly. We reconstructed in three dimensions the flight trajectories of these two species and those of the presented targets they were attempting to intercept. We then tested their recorded performances against simulations. We found that both species intercept targets on near time-optimal courses. To investigate the guidance laws that could underlie this behaviour, we tested three alternative control systems (pure pursuit, deviated pursuit and proportional navigation). Only proportional navigation explains the timing and magnitude of fly steering responses, but with differing gain constants and delays for each fly species. Holcocephala uses a dimensionless navigational constant of N ≈ 3 with a time delay of ≈28 ms to intercept targets over a comparatively long range. This constant is optimal, as it minimizes the control effort required to hit the target. In contrast, Coenosia uses a constant of N ≈ 1.5 with a time delay of ≈18 ms, this setting may allow Coenosia to cope with the extremely high line-of-sight rotation rates, which are due to close target proximity, and thus prevent overcompensation of steering. This is the first clear evidence of interception supported by proportional navigation in insects. This work also demonstrates how by setting different gains and delays, the same simple feedback controller can yield the necessary performance in two different environments.


Assuntos
Dípteros/fisiologia , Voo Animal/fisiologia , Comportamento Predatório/fisiologia , Animais , Modelos Biológicos
5.
Ecol Evol ; 7(6): 1663-1673, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28331577

RESUMO

Static allometries determine how organ size scales in relation to body mass. The extent to which these allometric relationships are free to evolve, and how they differ among closely related species, has been debated extensively and remains unclear; changes in intercept appear common, but changes in slope are far rarer. Here, we compare the scaling relationships that govern the structure of compound eyes of four closely related ant species from the genus Formica. Comparison among these species revealed changes in intercept but not slope in the allometric scaling relationships governing eye area, facet number, and mean facet diameter. Moreover, the scaling between facet diameter and number was conserved across all four species. In contrast, facet diameters from distinct regions of the compound eye differed in both intercept and slope within a single species and when comparing homologous regions among species. Thus, even when species are conservative in the scaling of whole organs, they can differ substantially in regional scaling within organs. This, at least partly, explains how species can produce organs that adhere to genus wide scaling relationships while still being able to invest differentially in particular regions of organs to produce specific features that match their ecology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA