Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Food Res Int ; 129: 108838, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32036921

RESUMO

In this study, we present a systematic proteomic overview of macadamia nut using a label-free shotgun proteomic approach. We identified 947 proteins in 723 clusters and gene ontology analysis revealed proteins across 46 functional categories including carbohydrate metabolism (10%), protein metabolic processes (5%), amino acid metabolism (4%), transport (4%), stress response (3%), lipid metabolism (3%), protein folding (3%) and defense response (1.4%). The defense response proteins accounted for 24% of the total peptide abundance. The vicilin-like macadamia antimicrobial peptides 2-3 (MiAMP2) was the most abundant protein, followed by glyceraldehyde-3-phosphate dehydrogenase 3, 11S legumin-like protein, 2-phospho-D-glycerate hydrolase and heat shock 70 kDa protein among others. The cascading of amino acid and carbohydrate metabolic pathways in macadamia nut were constructed against reference maps from KEGG and proposed for the first time. Results were also indicative of useful protein candidates with possible allergenic potential and cross-reactivity in macadamia nut. The in-silico analysis revealed homology and linear epitope similarities to known allergens such as conglutin ß allergen from lupin, Jug r2 vicilin allergens from walnut, Ara h3 11S globulin from peanut, small rubber particle protein Hev b3, hevein, enolase 2, HSP 70kDa Cla h4, Der f28 allergen, and methylglyoxalases. Label-free shotgun proteomics reveal valuable insights into the genetic and biological makeup of macadamia nut proteome and provide guidance on protein candidates with allergenic potential for further immunological investigation. Data are available via ProteomeXchange with identifier PXD015364.


Assuntos
Macadamia/química , Nozes/química , Proteômica , Proteínas de Armazenamento de Sementes/metabolismo , Alérgenos/imunologia , Sequência de Aminoácidos , Antígenos de Plantas/imunologia , Arachis/química , Metabolismo dos Carboidratos , Reações Cruzadas , Eletroforese em Gel de Poliacrilamida , Epitopos/imunologia , Estudos de Avaliação como Assunto , Hipersensibilidade Alimentar/imunologia , Globulinas/metabolismo , Juglans/química , Filogenia , Espectrometria de Massas em Tandem
2.
Biomolecules ; 10(9)2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878262

RESUMO

The study aimed to test the hypothesis that monomethyl branched-chain fatty acids (BCFAs) and a lipid extract of Conidiobolus heterosporus (CHLE), rich in monomethyl BCFAs, are able to activate the nuclear transcription factor peroxisome proliferator-activated receptor alpha (PPARalpha). Rat Fao cells were incubated with the monomethyl BCFAs 12-methyltridecanoic acid (MTriA), 12-methyltetradecanoic acid (MTA), isopalmitic acid (IPA) and 14-methylhexadecanoic acid (MHD), and the direct activation of PPARalpha was evaluated by reporter gene assay using a PPARalpha responsive reporter gene. Furthermore, Fao cells were incubated with different concentrations of the CHLE and PPARalpha activation was also evaluated by using the reporter gene assay, and by determining the mRNA concentrations of selected PPARalpha target genes by real-time RT-PCR. The reporter gene assay revealed that IPA and the CHLE, but not MTriA, MHD and MTA, activate the PPARalpha responsive reporter gene. CHLE dose-dependently increased mRNA concentrations of the PPARalpha target genes acyl-CoA oxidase (ACOX1), cytochrome P450 4A1 (CYP4A1), carnitine palmitoyltransferase 1A (CPT1A) and solute carrier family 22 (organic cation/carnitine transporter), member 5 (SLC22A5). In conclusion, the monomethyl BCFA IPA is a potent PPARalpha activator. CHLE activates PPARalpha-dependent gene expression in Fao cells, an effect that is possibly mediated by IPA.


Assuntos
Conidiobolus/química , Ácidos Graxos/metabolismo , PPAR alfa/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Genes Reporter , PPAR alfa/agonistas , Ratos
3.
J Agric Food Chem ; 66(10): 2387-2392, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29534574

RESUMO

A number of methyl-branched aldehydes impart interesting flavor impressions, and especially 12-methyltridecanal is a highly sought after flavoring compound for savory foods. Its smell is reminiscent of cooked meat and tallow. For the biotechnological production of 12-methyltridecanal, the literature was screened for fungi forming iso-fatty acids. Suitable organisms were identified and successfully grown in submerged cultures. The culture medium was optimized to increase the yields of branched fatty acids. A recombinant carboxylic acid reductase was used to reduce 12-methyltridecanoic acid to 12-methyltridecanal. The efficiency of whole-cell catalysis was compared to that of the purified enzyme preparation. After lipase-catalyzed hydrolysis of the fungal lipid extracts, the released fatty acids were converted to the corresponding aldehydes, including 12-methyltridecanal and 12-methyltetradecanal.


Assuntos
Aldeídos/metabolismo , Conidiobolus/enzimologia , Proteínas Fúngicas/metabolismo , Oxirredutases/metabolismo , Aldeídos/química , Biotecnologia , Biotransformação , Conidiobolus/crescimento & desenvolvimento , Conidiobolus/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Aromatizantes/química , Aromatizantes/metabolismo , Proteínas Fúngicas/química , Oxirredutases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA