Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Cell ; 187(7): 1769-1784.e18, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38552613

RESUMO

Mapping the intricate spatial relationships between the many different molecules inside a cell is essential to understanding cellular functions in all their complexity. Super-resolution fluorescence microscopy offers the required spatial resolution but struggles to reveal more than four different targets simultaneously. Exchanging labels in subsequent imaging rounds for multiplexed imaging extends this number but is limited by its low throughput. Here, we present a method for rapid multiplexed super-resolution microscopy that can, in principle, be applied to a nearly unlimited number of molecular targets by leveraging fluorogenic labeling in conjunction with transient adapter-mediated switching for high-throughput DNA-PAINT (FLASH-PAINT). We demonstrate the versatility of FLASH-PAINT with four applications: mapping nine proteins in a single mammalian cell, elucidating the functional organization of primary cilia by nine-target imaging, revealing the changes in proximity of thirteen different targets in unperturbed and dissociated Golgi stacks, and investigating and quantifying inter-organelle contacts at 3D super-resolution.


Assuntos
Microscopia de Fluorescência , Animais , DNA , Complexo de Golgi , Mamíferos , Microscopia de Fluorescência/métodos , Oligonucleotídeos , Proteínas
2.
Cell ; 185(21): 3844-3848, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36174578

RESUMO

The foundational research recognized by this year's Lasker Basic Science Research Award "for discoveries concerning the integrins-key mediators of cell-matrix and cell-cell adhesion in physiology and disease" reaches back to the 1970s.


Assuntos
Distinções e Prêmios , Integrinas
3.
Cell ; 166(4): 1028-1040, 2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27397506

RESUMO

Fluorescence nanoscopy, or super-resolution microscopy, has become an important tool in cell biological research. However, because of its usually inferior resolution in the depth direction (50-80 nm) and rapidly deteriorating resolution in thick samples, its practical biological application has been effectively limited to two dimensions and thin samples. Here, we present the development of whole-cell 4Pi single-molecule switching nanoscopy (W-4PiSMSN), an optical nanoscope that allows imaging of three-dimensional (3D) structures at 10- to 20-nm resolution throughout entire mammalian cells. We demonstrate the wide applicability of W-4PiSMSN across diverse research fields by imaging complex molecular architectures ranging from bacteriophages to nuclear pores, cilia, and synaptonemal complexes in large 3D cellular volumes.


Assuntos
Técnicas Citológicas/métodos , Microscopia de Fluorescência/métodos , Imagem Individual de Molécula/métodos , Animais , Bacteriófagos/ultraestrutura , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/ultraestrutura , Técnicas Citológicas/instrumentação , Complexo de Golgi/ultraestrutura , Masculino , Camundongos , Microscopia de Fluorescência/instrumentação , Imagem Individual de Molécula/instrumentação , Espermatócitos/ultraestrutura , Complexo Sinaptonêmico/ultraestrutura
4.
Nat Methods ; 20(6): 891-897, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37106230

RESUMO

Hierarchical organization of integral membrane proteins (IMP) and lipids at the membrane is essential for regulating myriad downstream signaling. A quantitative understanding of these processes requires both detections of oligomeric organization of IMPs and lipids directly from intact membranes and determination of key membrane components and properties that regulate them. Addressing this, we have developed a platform that enables native mass spectrometry (nMS) analysis of IMP-lipid complexes directly from intact and customizable lipid membranes. Both the lipid composition and membrane properties (such as curvature, tension, and fluidity) of these bilayers can be precisely customized to a target membrane. Subsequent direct nMS analysis of these intact proteolipid vesicles can yield the oligomeric states of the embedded IMPs, identify bound lipids, and determine the membrane properties that can regulate the observed IMP-lipid organization. Applying this method, we show how lipid binding regulates neurotransmitter release and how membrane composition regulates the functional oligomeric state of a transporter.


Assuntos
Lipídeos , Proteínas de Membrana , Espectrometria de Massas/métodos , Transporte Biológico , Lipídeos/química , Proteínas de Membrana/química , Bicamadas Lipídicas/química
5.
Cell ; 146(6): 851-4, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21907398

RESUMO

F.-Ulrich Hartl and Arthur Horwich will share this year's Lasker Basic Medical Science Award for the discovery of the cell's protein-folding machinery, exemplified by cage-like structures that convert newly synthesized proteins into their biologically active forms. Their fundamental findings reveal mechanisms that operate in normal physiologic processes and help to explain the problems that arise in diseases of protein folding.


Assuntos
Distinções e Prêmios , Biologia/história , Dobramento de Proteína , Proteínas/metabolismo , Animais , Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP72/metabolismo , História do Século XX , Humanos , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Proteínas/química , Estados Unidos
6.
Proc Natl Acad Sci U S A ; 120(39): e2311128120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37732752

RESUMO

This year's Lasker Basic Science Award recognizes the invention of AlphaFold, a revolutionary advance in the history of protein research which for the first time offers the practical ability to accurately predict the three-dimensional arrangement of amino acids in the vast majority of proteins on a genomic scale on the basis of sequence alone [J. Jumper et al., Nature 596, 583-589 (2021) and K. Tunyasuvunakool et al., Nature 596, 590-596 (2021)]. This extraordinary achievement by Demis Hassabis and John Jumper and their coworkers at Google's DeepMind and other collaborators was built on decades of experimental protein structure determination (structural biology) as well as the gradual development of multiple strategies incorporating biologically inspired statistical approaches. But when Jumper and Hassabis added a brew of innovative neural network-based machine learning approaches to the mix, the results were explosive. Realizing the half-century-old dream of predicting protein structure has already accelerated the pace and creativity of many areas of Chemistry, Biology, and Medicine.


Assuntos
Distinções e Prêmios , Medicina , Aminoácidos , Genômica , Aprendizado de Máquina
7.
Proc Natl Acad Sci U S A ; 120(44): e2306086120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37883433

RESUMO

Munc13-1 is essential for vesicle docking and fusion at the active zone of synapses. Here, we report that Munc13-1 self-assembles into molecular clusters within diacylglycerol-rich microdomains present in phospholipid bilayers. Although the copy number of Munc13-1 molecules in these clusters has a broad distribution, a systematic Poisson analysis shows that this is most likely the result of two molecular species: monomers and mainly hexameric oligomers. Each oligomer is able to capture one vesicle independently. Hexamers have also been observed in crystals of Munc13-1 that form between opposed phospholipid bilayers [K. Grushin, R. V. Kalyana Sundaram, C. V. Sindelar, J. E. Rothman, Proc. Natl. Acad. Sci. U.S.A. 119, e2121259119 (2022)]. Mutations targeting the contacts stabilizing the crystallographic hexagons also disrupt the isolated hexamers, suggesting they are identical. Additionally, these mutations also convert vesicle binding from a cooperative to progressive mode. Our study provides an independent approach showing that Munc13-1 can form mainly hexamers on lipid bilayers each capable of vesicle capture.


Assuntos
Diglicerídeos , Proteínas SNARE , Proteínas SNARE/metabolismo , Diglicerídeos/metabolismo , Sinapses/metabolismo , Chaperonas Moleculares/metabolismo , Fosfolipídeos/metabolismo
8.
Proc Natl Acad Sci U S A ; 120(45): e2311484120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37903271

RESUMO

The synaptic vesicle protein Synaptophysin (Syp) has long been known to form a complex with the Vesicle associated soluble N-ethylmaleimide sensitive fusion protein attachment receptor (v-SNARE) Vesicle associated membrane protein (VAMP), but a more specific molecular function or mechanism of action in exocytosis has been lacking because gene knockouts have minimal effects. Utilizing fully defined reconstitution and single-molecule measurements, we now report that Syp functions as a chaperone that determines the number of SNAREpins assembling between a ready-release vesicle and its target membrane bilayer. Specifically, Syp directs the assembly of 12 ± 1 SNAREpins under each docked vesicle, even in the face of an excess of SNARE proteins. The SNAREpins assemble in successive waves of 6 ± 1 and 5 ± 2 SNAREpins, respectively, tightly linked to oligomerization of and binding to the vesicle Ca++ sensor Synaptotagmin. Templating of 12 SNAREpins by Syp is likely the direct result of its hexamer structure and its binding of VAMP2 dimers, both of which we demonstrate in detergent extracts and lipid bilayers.


Assuntos
Fusão de Membrana , Vesículas Sinápticas , Sinaptofisina/genética , Sinaptofisina/metabolismo , Fusão de Membrana/fisiologia , Vesículas Sinápticas/metabolismo , Sinaptotagminas/metabolismo , Proteínas SNARE/metabolismo , Exocitose/fisiologia
9.
Proc Natl Acad Sci U S A ; 120(34): e2309516120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37590407

RESUMO

Here, we introduce the full functional reconstitution of genetically validated core protein machinery (SNAREs, Munc13, Munc18, Synaptotagmin, and Complexin) for synaptic vesicle priming and release in a geometry that enables detailed characterization of the fate of docked vesicles both before and after release is triggered with Ca2+. Using this setup, we identify new roles for diacylglycerol (DAG) in regulating vesicle priming and Ca2+-triggered release involving the SNARE assembly chaperone Munc13. We find that low concentrations of DAG profoundly accelerate the rate of Ca2+-dependent release, and high concentrations reduce clamping and permit extensive spontaneous release. As expected, DAG also increases the number of docked, release-ready vesicles. Dynamic single-molecule imaging of Complexin binding to release-ready vesicles directly establishes that DAG accelerates the rate of SNAREpin assembly mediated by chaperones, Munc13 and Munc18. The selective effects of physiologically validated mutations confirmed that the Munc18-Syntaxin-VAMP2 "template" complex is a functional intermediate in the production of primed, release-ready vesicles, which requires the coordinated action of Munc13 and Munc18.


Assuntos
Diglicerídeos , Vesículas Sinápticas , Humanos , Exocitose , Transmissão Sináptica , Sinaptotagminas , Vesícula
10.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35135883

RESUMO

How can exactly six SNARE complexes be assembled under each synaptic vesicle? Here we report cryo-EM crystal structures of the core domain of Munc13, the key chaperone that initiates SNAREpin assembly. The functional core of Munc13, consisting of C1-C2B-MUN-C2C (Munc13C) spontaneously crystallizes between phosphatidylserine-rich bilayers in two distinct conformations, each in a radically different oligomeric state. In the open conformation (state 1), Munc13C forms upright trimers that link the two bilayers, separating them by ∼21 nm. In the closed conformation, six copies of Munc13C interact to form a lateral hexamer elevated ∼14 nm above the bilayer. Open and closed conformations differ only by a rigid body rotation around a flexible hinge, which when performed cooperatively assembles Munc13 into a lateral hexamer (state 2) in which the key SNARE assembly-activating site of Munc13 is autoinhibited by its neighbor. We propose that each Munc13 in the lateral hexamer ultimately assembles a single SNAREpin, explaining how only and exactly six SNARE complexes are templated. We suggest that state 1 and state 2 may represent two successive states in the synaptic vesicle supply chain leading to "primed" ready-release vesicles in which SNAREpins are clamped and ready to release (state 3).


Assuntos
Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Modelos Moleculares , Proteínas do Tecido Nervoso/genética , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA