RESUMO
Hydrocarbon seepage is overlooked in the marine environment, mostly due to the lack of high-resolution exploration data. This contribution is about the set-up of a relocatable and cost-effective monitoring system, which was tested on two seepages in the Central Adriatic Sea. The two case studies are an oil spill at a water depth of 10 m and scattered biogenic methane seeps at a water depth of 84 m. Gas plumes in the water column were detected with a multibeam system, tightened to sub-seafloor seismic reflection data. Dissolved benthic fluxes of nutrients, metals and Dissolved Inorganic Carbon (DIC) were measured by in situ deployment of a benthic chamber, which was used also for the first time to collect water samples for hydrocarbons characterization. In addition, the concentration of polycyclic aromatic hydrocarbons, as well as major and trace elements were analyzed to provide an estimate of hydrocarbon contamination in the surrounding sediment and to make further inferences on the petroleum system.
RESUMO
The Southern Ocean surrounding Antarctica is a region that is key to a range of climatic and oceanographic processes with worldwide effects, and is characterised by high biological productivity and biodiversity. Since 2013, the International Bathymetric Chart of the Southern Ocean (IBCSO) has represented the most comprehensive compilation of bathymetry for the Southern Ocean south of 60°S. Recently, the IBCSO Project has combined its efforts with the Nippon Foundation - GEBCO Seabed 2030 Project supporting the goal of mapping the world's oceans by 2030. New datasets initiated a second version of IBCSO (IBCSO v2). This version extends to 50°S (covering approximately 2.4 times the area of seafloor of the previous version) including the gateways of the Antarctic Circumpolar Current and the Antarctic circumpolar frontal systems. Due to increased (multibeam) data coverage, IBCSO v2 significantly improves the overall representation of the Southern Ocean seafloor and resolves many submarine landforms in more detail. This makes IBCSO v2 the most authoritative seafloor map of the area south of 50°S.
RESUMO
Tidal channels are crucial for the functioning of wetlands, though their morphological properties, which are relevant for seafloor habitats and flow, have been understudied so far. Here, we release a dataset composed of Digital Terrain Models (DTMs) extracted from a total of 2,500 linear kilometres of high-resolution multibeam echosounder (MBES) data collected in 2013 covering the entire network of tidal channels and inlets of the Venice Lagoon, Italy. The dataset comprises also the backscatter (BS) data, which reflect the acoustic properties of the seafloor, and the tidal current fields simulated by means of a high-resolution three-dimensional unstructured hydrodynamic model. The DTMs and the current fields help define how morphological and benthic properties of tidal channels are affected by the action of currents. These data are of potential broad interest not only to geomorphologists, oceanographers and ecologists studying the morphology, hydrodynamics, sediment transport and benthic habitats of tidal environments, but also to coastal engineers and stakeholders for cost-effective monitoring and sustainable management of this peculiar shallow coastal system.