Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Breast Cancer Res Treat ; 202(2): 325-334, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37517027

RESUMO

PURPOSE: The bovine leukemia virus (BLV) is a deltaretrovirus that causes malignant lymphoma and lymphosarcomas in cattle globally and has high prevalence among large scale U.S. dairy herds. Associations between presence of BLV DNA in human mammary tissue and human breast cancer incidence have been reported. We sought to estimate the prevalence of BLV DNA in breast cancer tissue samples in a rural state with an active dairy industry. METHODS: We purified genomic DNA from 56 fresh-frozen breast cancer tissue samples (51 tumor samples, 5 samples representing adjacent normal breast tissue) banked between 2016 and 2019. Using nested PCR assays, multiple BLV tax sequence primers and primers for the long terminal repeat (LTR) were used to detect BLV DNA in tissue samples and known positive control samples, including the permanently infected fetal lamb kidney cell line (FLK-BLV) and blood from BLV positive cattle. RESULTS: The median age of patients from which samples were obtained at the time of treatment was 60 (40-93) and all were female. Ninety percent of patients had invasive ductal carcinoma. The majority were poorly differentiated (60%). On PCR assay, none of the tumor samples tested positive for BLV DNA, despite having consistent signals in positive controls. CONCLUSION: We did not find BLV DNA in fresh-frozen breast cancer tumors from patients presenting to a hospital in Vermont. Our findings suggest a low prevalence of BLV in our patient population and a need to reevaluate the association between BLV and human breast cancer.


Assuntos
Neoplasias da Mama , Vírus da Leucemia Bovina , Neoplasias Mamárias Animais , Bovinos , Humanos , Feminino , Animais , Ovinos/genética , Masculino , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Vírus da Leucemia Bovina/genética , DNA Viral/genética , Mama
2.
PLoS Pathog ; 17(5): e1009585, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34010360

RESUMO

Coronavirus disease-19 (COVID-19) emerged in late 2019 in China and rapidly became pandemic. As with other coronaviruses, a preponderance of evidence suggests the virus originated in horseshoe bats (Rhinolophus spp.) and may have infected an intermediate host prior to spillover into humans. A significant concern is that SARS-CoV-2 could become established in secondary reservoir hosts outside of Asia. To assess this potential, we challenged deer mice (Peromyscus maniculatus) with SARS-CoV-2 and found robust virus replication in the upper respiratory tract, lungs and intestines, with detectable viral RNA for up to 21 days in oral swabs and 6 days in lungs. Virus entry into the brain also occurred, likely via gustatory-olfactory-trigeminal pathway with eventual compromise to the blood-brain barrier. Despite this, no conspicuous signs of disease were observed, and no deer mice succumbed to infection. Expression of several innate immune response genes were elevated in the lungs, including IFNα, IFNß, Cxcl10, Oas2, Tbk1 and Pycard. Elevated CD4 and CD8ß expression in the lungs was concomitant with Tbx21, IFNγ and IL-21 expression, suggesting a type I inflammatory immune response. Contact transmission occurred from infected to naive deer mice through two passages, showing sustained natural transmission and localization into the olfactory bulb, recapitulating human neuropathology. In the second deer mouse passage, an insertion of 4 amino acids occurred to fixation in the N-terminal domain of the spike protein that is predicted to form a solvent-accessible loop. Subsequent examination of the source virus from BEI Resources determined the mutation was present at very low levels, demonstrating potent purifying selection for the insert during in vivo passage. Collectively, this work has determined that deer mice are a suitable animal model for the study of SARS-CoV-2 respiratory disease and neuropathogenesis, and that they have the potential to serve as secondary reservoir hosts in North America.


Assuntos
COVID-19/fisiopatologia , COVID-19/transmissão , Peromyscus/virologia , Doenças dos Roedores/transmissão , Animais , Encéfalo/patologia , Encéfalo/virologia , COVID-19/patologia , Modelos Animais de Doenças , Reservatórios de Doenças , Suscetibilidade a Doenças , Feminino , Masculino , Doenças dos Roedores/patologia , Doenças dos Roedores/virologia , Glicoproteína da Espícula de Coronavírus/genética , Replicação Viral
3.
J Gen Virol ; 102(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34410903

RESUMO

An infectious agent's pathogenic and transmission potential is heavily influenced by early events during the asymptomatic or subclinical phase of disease. During this phase, the presence of infectious agent may be relatively low. An important example of this is Zika virus (ZIKV), which can cross the placenta and infect the foetus, even in mothers with subclinical infections. These subclinical infections represent roughly 80 % of all human infections. Initial ZIKV pathogenesis studies were performed in type I interferon receptor (IFNAR) knockout mice. Blunting the interferon response resulted in robust infectivity, and increased the utility of mice to model ZIKV infections. However, due to the removal of the interferon response, the use of these models impedes full characterization of immune responses to ZIKV-related pathologies. Moreover, IFNAR-deficient models represent severe disease whereas less is known regarding subclinical infections. Investigation of the anti-viral immune response elicited at the maternal-foetal interface is critical to fully understand mechanisms involved in foetal infection, foetal development, and disease processes recognized to occur during subclinical maternal infections. Thus, immunocompetent experimental models that recapitulate natural infections are needed. We have established subclinical intravaginal ZIKV infections in mice and guinea pigs. We found that these infections resulted in: the presence of both ZIKV RNA transcripts and infectious virus in maternal and placental tissues, establishment of foetal infections and ZIKV-mediated CXCL10 expression. These models will aid in discerning the mechanisms of subclinical ZIKV mother-to-offspring transmission, and by extension can be used to investigate other maternal infections that impact foetal development.


Assuntos
Feto , Placenta , Complicações Infecciosas na Gravidez , Infecção por Zika virus/virologia , Zika virus , Animais , Chlorocebus aethiops , Feminino , Feto/imunologia , Feto/virologia , Cobaias , Humanos , Transmissão Vertical de Doenças Infecciosas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placenta/imunologia , Placenta/virologia , Gravidez , Complicações Infecciosas na Gravidez/imunologia , Complicações Infecciosas na Gravidez/virologia , Células Vero , Zika virus/imunologia , Zika virus/patogenicidade
4.
PLoS Pathog ; 14(8): e1007261, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30118512

RESUMO

Positive strand RNA viruses, such as dengue virus type 2 (DENV2) expand and structurally alter ER membranes to optimize cellular communication pathways that promote viral replicative needs. These complex rearrangements require significant protein scaffolding as well as changes to the ER chemical composition to support these structures. We have previously shown that the lipid abundance and repertoire of host cells are significantly altered during infection with these viruses. Specifically, enzymes in the lipid biosynthesis pathway such as fatty acid synthase (FAS) are recruited to viral replication sites by interaction with viral proteins and displayed enhanced activities during infection. We have now identified that events downstream of FAS (fatty acid desaturation) are critical for virus replication. In this study we screened enzymes in the unsaturated fatty acid (UFA) biosynthetic pathway and found that the rate-limiting enzyme in monounsaturated fatty acid biosynthesis, stearoyl-CoA desaturase 1 (SCD1), is indispensable for DENV2 replication. The enzymatic activity of SCD1, was required for viral genome replication and particle release, and it was regulated in a time-dependent manner with a stringent requirement early during viral infection. As infection progressed, SCD1 protein expression levels were inversely correlated with the concentration of viral dsRNA in the cell. This modulation of SCD1, coinciding with the stage of viral replication, highlighted its function as a trigger of early infection and an enzyme that controlled alternate lipid requirements during early versus advanced infections. Loss of function of this enzyme disrupted structural alterations of assembled viral particles rendering them non-infectious and immature and defective in viral entry. This study identifies the complex involvement of SCD1 in DENV2 infection and demonstrates that these viruses alter ER lipid composition to increase infectivity of the virus particles.


Assuntos
Vírus da Dengue/patogenicidade , Dengue/diagnóstico , Interações Hospedeiro-Patógeno , Estearoil-CoA Dessaturase/fisiologia , Células A549 , Animais , Biomarcadores , Células Cultivadas , Chlorocebus aethiops , Cricetinae , Dengue/patologia , Dengue/virologia , Diagnóstico Diferencial , Progressão da Doença , Diagnóstico Precoce , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Interações Hospedeiro-Patógeno/genética , Humanos , Lipogênese/genética , Masculino , Estearoil-CoA Dessaturase/genética , Células Vero , Vírion/patogenicidade , Virulência , Replicação Viral/genética
5.
Virol J ; 17(1): 63, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32370779

RESUMO

BACKGROUND: Tick-borne phenuivirus (TBPVs) comprise human and animal viruses that can cause a variety of clinical syndromes ranging from self-limiting febrile illness to fatal haemorrhagic fevers. OBJECTIVE: Detect Phlebovirus (Family Phenuiviridae) in ticks collected from domestic animals in Córdoba, Colombia. METHODS: We collected 2365 ticks from domestic animals in three municipalities of the Department of Cordoba, Colombia in 2016. Ticks were identified and pooled by species for RNA extraction. A nested real-time PCR with specific primers for Phlebovirus and a specific probe for Heartland virus (HRTV) formerly a Phlebovirus, now a Banyangvirus were performed. Also, a conventional nested PCR, with the same specific primers was used to detect other Phleboviruses, with positive reactions indicated by an amplified cDNA fragment of approximately 244 bp determined by gel electrophoresis. These bands were gel-purified and sequenced by the Sanger method. RESULTS: Using real-time RT-PCR, no positive results for HRTV were found. However, using conventional nested PCR 2.2% (5/229 pools) yielded a product of 244 bp. One positive sample was detected in a pool of Dermacentor nitens ticks collected from a horse, and the four remaining positive pools were from Rhipicephalus microplus collected from cattle. The five positive nucleotide sequences had identities of 93 to 96% compared to a section of the L-segment of Lihan Tick virus, a Phlebovirus originally detected in R. microplus ticks in China. The strongest identity (96-99%) was with Lihan Tick virus detected in R. microplus ticks from Brazil. CONCLUSIONS: This is the first report of viral detection in ticks in Colombia. We detected a Colombian strain of Lihan Tick virus. We recommend expanding the sampling area and carrying out more eco-epidemiological studies related to epidemiological surveillance of viruses on ticks in Colombia.


Assuntos
Phlebovirus/genética , Filogenia , Carrapatos/virologia , Animais , Animais Domésticos/parasitologia , Bovinos , Colômbia , Estudos Transversais , Dermacentor/virologia , Cães , Cavalos , Phlebovirus/classificação , Phlebovirus/isolamento & purificação , Estudos Prospectivos , Vírus de RNA/genética , Rhipicephalus/virologia , Análise de Sequência de DNA
6.
PLoS Pathog ; 18(4): e1010422, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35446926
7.
J Virol ; 90(3): 1231-43, 2016 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26559844

RESUMO

UNLABELLED: Regulation of gene transcription in varicella-zoster virus (VZV), a ubiquitous human neurotropic alphaherpesvirus, requires coordinated binding of multiple host and virus proteins onto specific regions of the virus genome. Chromatin immunoprecipitation (ChIP) is widely used to determine the location of specific proteins along a genomic region. Since the size range of sheared virus DNA fragments governs the limit of accurate protein localization, particularly for compact herpesvirus genomes, we used a quantitative PCR (qPCR)-based assay to determine the efficiency of VZV DNA shearing before ChIP, after which the assay was used to determine the relationship between transcript abundance and the occupancy of phosphorylated RNA polymerase II (RNAP) on the gene promoter, body, and terminus of VZV genes 9, 51, and 66. The abundance of VZV gene 9, 51, and 66 transcripts in VZV-infected human fetal lung fibroblasts was determined by reverse transcription-linked quantitative PCR. Our results showed that the C-terminal domain of RNAP is hyperphosphorylated at serine 5 (S5(P)) on VZV genes 9, 51, and 66 independently of transcript abundance and the location within the virus gene at both 1 and 3 days postinfection (dpi). In contrast, phosphorylated serine 2 (S2(P))-modified RNAP was not detected at any virus gene location at 3 dpi and was detected at levels only slightly above background levels at 1 dpi. IMPORTANCE: Regulation of herpesvirus gene transcription is an elaborate choreography between proteins and DNA that is revealed by chromatin immunoprecipitation (ChIP). We used a quantitative PCR-based assay to determine fragment size after DNA shearing, a critical parameter in ChIP assays, and exposed a basic difference in the mechanism of transcription between mammalian cells and VZV. We found that hyperphosphorylation at serine 5 of the C-terminal domain of RNAP along the lengths of VZV genes (the promoter, body, and transcription termination site) was independent of mRNA abundance. In contrast, little to no enrichment of serine 3 phosphorylation of RNAP was detected at these virus gene regions. This is distinct from the findings for RNAP at highly regulated host genes, where RNAP S5(P) occupancy decreased and S2(P) levels increased as the polymerase transited through the gene. Overall, these results suggest that RNAP associates with human and virus transcriptional units through different mechanisms.


Assuntos
DNA Viral/química , Herpesvirus Humano 3/fisiologia , RNA Polimerase II/análise , Transcrição Gênica , Células Cultivadas , Imunoprecipitação da Cromatina , Fibroblastos/virologia , Humanos , Fosforilação , Processamento de Proteína Pós-Traducional , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
J Virol ; 89(10): 5450-61, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25741012

RESUMO

UNLABELLED: Walleye dermal sarcoma virus (WDSV) infection is associated with the seasonal development and regression of walleye dermal sarcoma. Previous work showed that the retroviral cyclin (RV-cyclin), encoded by WDSV, has separable cyclin box and transcription activation domains. It binds to cyclin-dependent kinase 8 (CDK8) and enhances its kinase activity. CDK8 is evolutionarily conserved and is frequently overexpressed in human cancers. It is normally activated by cyclin C and is required for transcription elongation of the serum response genes (immediate early genes [IEGs]) FOS, EGR1, and cJUN. The IEGs drive cell proliferation, and their expression is brief and highly regulated. Here we show that constitutive expression of RV-cyclin in the HCT116 colon cancer cell line significantly increases the level of IEG expression in response to serum stimulation. Quantitative reverse transcription-PCR (RT-PCR) and nuclear run-on assays provide evidence that RV-cyclin does not alter the initiation of IEG transcription but does enhance the overall rate of transcription elongation and maintains transcription reinitiation. RV-cyclin does not increase activating phosphorylation events in the mitogen-activated protein kinase pathway and does not inhibit decay of IEG mRNAs. At the EGR1 gene locus, RV-cyclin increases and maintains RNA polymerase II (Pol II) occupancy after serum stimulation, in conjunction with increased and extended EGR1 gene expression. The RV-cyclin increases CDK8 occupancy at the EGR1 gene locus before and after serum stimulation. Both of RV-cyclin's functional domains, i.e., the cyclin box and the activation domain, are necessary for the overall enhancement of IEG expression. RV-cyclin presents a novel and ancient mechanism of retrovirus-induced oncogenesis. IMPORTANCE: The data reported here are important to both virology and cancer biology. The novel mechanism pinpoints CDK8 in the development of walleye dermal sarcoma and sheds light on CDK8's role in many human cancers. CDK8 controls expression from highly regulated genes, including the interferon-stimulated genes. Its function is likely the target of many viral interferon-resistance mechanisms. CDK8 also controls cellular responses to metabolic stimuli, stress, and hypoxia, in addition to the serum response. The retroviral cyclin (RV-cyclin) represents a highly selected probe of CDK8 function. RV-cyclin does not control CDK8 specificity but instead enhances CDK8's effects on regulated genes, an important distinction for its use to delineate natural CDK8 targets. The outcomes of this research are applicable to investigations of normal and abnormal CDK8 functions. The mechanisms defined here will contribute directly to the dermal sarcoma model in fish and clarify an important path for oncogenesis and innate resistance to viruses.


Assuntos
Quinase 8 Dependente de Ciclina/metabolismo , Ciclinas/fisiologia , Epsilonretrovirus/fisiologia , Proteínas dos Retroviridae/fisiologia , Animais , Carcinogênese , Ciclinas/genética , Proteína 1 de Resposta de Crescimento Precoce/genética , Epsilonretrovirus/genética , Epsilonretrovirus/patogenicidade , Doenças dos Peixes/genética , Doenças dos Peixes/virologia , Genes Precoces , Genes fos , Genes jun , Células HCT116 , Interações Hospedeiro-Patógeno , Humanos , Percas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Infecções por Retroviridae/genética , Infecções por Retroviridae/veterinária , Infecções por Retroviridae/virologia , Proteínas dos Retroviridae/genética , Elongação da Transcrição Genética , Infecções Tumorais por Vírus/genética , Infecções Tumorais por Vírus/veterinária , Infecções Tumorais por Vírus/virologia
9.
J Gen Virol ; 96(Pt 7): 1581-602, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25794504

RESUMO

Herpes simplex virus type 1 (HSV-1; human herpesvirus 1) and varicella-zoster virus (VZV; human herpesvirus 3) are human neurotropic alphaherpesviruses that cause lifelong infections in ganglia. Following primary infection and establishment of latency, HSV-1 reactivation typically results in herpes labialis (cold sores), but can occur frequently elsewhere on the body at the site of primary infection (e.g. whitlow), particularly at the genitals. Rarely, HSV-1 reactivation can cause encephalitis; however, a third of the cases of HSV-1 encephalitis are associated with HSV-1 primary infection. Primary VZV infection causes varicella (chickenpox) following which latent virus may reactivate decades later to produce herpes zoster (shingles), as well as an increasingly recognized number of subacute, acute and chronic neurological conditions. Following primary infection, both viruses establish a latent infection in neuronal cells in human peripheral ganglia. However, the detailed mechanisms of viral latency and reactivation have yet to be unravelled. In both cases latent viral DNA exists in an 'end-less' state where the ends of the virus genome are joined to form structures consistent with unit length episomes and concatemers, from which viral gene transcription is restricted. In latently infected ganglia, the most abundantly detected HSV-1 RNAs are the spliced products originating from the primary latency associated transcript (LAT). This primary LAT is an 8.3 kb unstable transcript from which two stable (1.5 and 2.0 kb) introns are spliced. Transcripts mapping to 12 VZV genes have been detected in human ganglia removed at autopsy; however, it is difficult to ascribe these as transcripts present during latent infection as early-stage virus reactivation may have transpired in the post-mortem time period in the ganglia. Nonetheless, low-level transcription of VZV ORF63 has been repeatedly detected in multiple ganglia removed as close to death as possible. There is increasing evidence that HSV-1 and VZV latency is epigenetically regulated. In vitro models that permit pathway analysis and identification of both epigenetic modulations and global transcriptional mechanisms of HSV-1 and VZV latency hold much promise for our future understanding in this complex area. This review summarizes the molecular biology of HSV-1 and VZV latency and reactivation, and also presents future directions for study.


Assuntos
Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 3/fisiologia , Ativação Viral , Latência Viral , Epigênese Genética , Gânglios/virologia , Regulação Viral da Expressão Gênica , Humanos , Neurônios/virologia , Transcrição Gênica
10.
J Virol ; 88(15): 8319-31, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24829335

RESUMO

UNLABELLED: Hantavirus cardiopulmonary syndrome (HCPS) is a rodent-borne disease with a high case-fatality rate that is caused by several New World hantaviruses. Each pathogenic hantavirus is naturally hosted by a principal rodent species without conspicuous disease and infection is persistent, perhaps for life. Deer mice (Peromyscus maniculatus) are the natural reservoirs of Sin Nombre virus (SNV), the etiologic agent of most HCPS cases in North America. Deer mice remain infected despite a helper T cell response that leads to high-titer neutralizing antibodies. Deer mice are also susceptible to Andes hantavirus (ANDV), which causes most HCPS cases in South America; however, deer mice clear ANDV. We infected deer mice with SNV or ANDV to identify differences in host responses that might account for this differential outcome. SNV RNA levels were higher in the lungs but not different in the heart, spleen, or kidneys. Most ANDV-infected deer mice had seroconverted 14 days after inoculation, but none of the SNV-infected deer mice had. Examination of lymph node cell antigen recall responses identified elevated immune gene expression in deer mice infected with ANDV and suggested maturation toward a Th2 or T follicular helper phenotype in some ANDV-infected deer mice, including activation of the interleukin 4 (IL-4) pathway in T cells and B cells. These data suggest that the rate of maturation of the immune response is substantially higher and of greater magnitude during ANDV infection, and these differences may account for clearance of ANDV and persistence of SNV. IMPORTANCE: Hantaviruses persistently infect their reservoir rodent hosts without pathology. It is unknown how these viruses evade sterilizing immune responses in the reservoirs. We have determined that infection of the deer mouse with its homologous hantavirus, Sin Nombre virus, results in low levels of immune gene expression in antigen-stimulated lymph node cells and a poor antibody response. However, infection of deer mice with a heterologous hantavirus, Andes virus, results in a robust lymph node cell response, signatures of T and B cell maturation, and production of antibodies. These findings suggest that an early and aggressive immune response to hantaviruses may lead to clearance in a reservoir host and suggest that a modest immune response may be a component of hantavirus ecology.


Assuntos
Anticorpos Antivirais/sangue , Infecções por Hantavirus/veterinária , Linfócitos/imunologia , Orthohantavírus/imunologia , Vírus Sin Nombre/imunologia , Estruturas Animais/virologia , Animais , Reservatórios de Doenças , Infecções por Hantavirus/imunologia , Infecções por Hantavirus/patologia , Infecções por Hantavirus/virologia , Masculino , Peromyscus , RNA Viral/análise , RNA Viral/genética , Carga Viral
11.
J Virol ; 88(8): 3914-24, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24453374

RESUMO

UNLABELLED: Gammaherpesviruses (GHVs) are a diverse and rapidly expanding group of viruses associated with a variety of disease conditions in humans and animals. To identify felid GHVs, we screened domestic cat (Felis catus), bobcat (Lynx rufus), and puma (Puma concolor) blood cell DNA samples from California, Colorado, and Florida using a degenerate pan-GHV PCR. Additional pan-GHV and long-distance PCRs were used to sequence a contiguous 3.4-kb region of each putative virus species, including partial glycoprotein B and DNA polymerase genes. We identified three novel GHVs, each present predominantly in one felid species: Felis catus GHV 1 (FcaGHV1) in domestic cats, Lynx rufus GHV 1 (LruGHV1) in bobcats, and Puma concolor GHV 1 (PcoGHV1) in pumas. To estimate infection prevalence, we developed real-time quantitative PCR assays for each virus and screened additional DNA samples from all three species (n = 282). FcaGHV1 was detected in 16% of domestic cats across all study sites. LruGHV1 was detected in 47% of bobcats and 13% of pumas across all study sites, suggesting relatively common interspecific transmission. PcoGHV1 was detected in 6% of pumas, all from a specific region of Southern California. The risk of infection for each host varied with geographic location. Age was a positive risk factor for bobcat LruGHV1 infection, and age and being male were risk factors for domestic cat FcaGHV1 infection. Further characterization of these viruses may have significant health implications for domestic cats and may aid studies of free-ranging felid ecology. IMPORTANCE: Gammaherpesviruses (GHVs) establish lifelong infection in many animal species and can cause cancer and other diseases in humans and animals. In this study, we identified the DNA sequences of three GHVs present in the blood of domestic cats (Felis catus), bobcats (Lynx rufus), and pumas (Puma concolor; also known as mountain lions, cougars, and panthers). We found that these viruses were closely related to, but distinct from, other known GHVs of animals and represent the first GHVs identified to be native to these feline species. We developed techniques to rapidly and specifically detect the DNA of these viruses in feline blood and found that the domestic cat and bobcat viruses were widespread across the United States. In contrast, puma virus was found only in a specific region of Southern California. Surprisingly, the bobcat virus was also detected in some pumas, suggesting relatively common virus transmission between these species. Adult domestic cats and bobcats were at greater risk for infection than juveniles. Male domestic cats were at greater risk for infection than females. This study identifies three new viruses that are widespread in three feline species, indicates risk factors for infection that may relate to the route of infection, and demonstrates cross-species transmission between bobcats and pumas. These newly identified viruses may have important effects on feline health and ecology.


Assuntos
Doenças do Gato/virologia , Gammaherpesvirinae/isolamento & purificação , Infecções por Herpesviridae/veterinária , Lynx/virologia , Puma/virologia , Animais , Animais Selvagens/virologia , Doenças do Gato/epidemiologia , Gatos , Feminino , Gammaherpesvirinae/classificação , Gammaherpesvirinae/genética , Infecções por Herpesviridae/epidemiologia , Infecções por Herpesviridae/virologia , Masculino , Dados de Sequência Molecular , Filogenia , Fatores de Risco , Estados Unidos/epidemiologia
12.
Viruses ; 16(4)2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38675927

RESUMO

Located 50 miles west of Fort Collins, Colorado, Colorado State University's Mountain Campus in Pingree Park hosted the 23rd annual Rocky Mountain Virology Association meeting in 2023 with 116 participants. The 3-day event at the end of September consisted of 28 talks and 43 posters that covered the topics of viral evolution and surveillance, developments in prion research, arboviruses and vector biology, host-virus interactions, and viral immunity and vaccines. This year's Randall Jay Cohrs keynote presentation covered the topic of One Health and emerging coronaviruses. This timely discussion covered the importance of global disease surveillance, international collaboration, and trans-disciplinary research teams to prevent and control future pandemics. Peak fall colors flanked the campus and glowed along the multiple mountain peaks, allowing for pristine views while discussing science and networking, or engaging in mountain activities like fly fishing and hiking. On behalf of the Rocky Mountain Virology Association, this report summarizes select presentations from the 23rd annual meeting.


Assuntos
Virologia , Humanos , Colorado , Animais , Viroses/virologia , Vírus/genética , Vírus/classificação , Príons , Arbovírus , Saúde Única
13.
J Virol ; 86(10): 5742-51, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22379099

RESUMO

Alterations in the functional levels of cyclin-dependent kinase-8 (CDK8) or its partner, cyclin C, have been clearly associated with cancers, including colon cancer, melanoma, and osteosarcoma. Walleye dermal sarcoma virus encodes a retroviral cyclin (RV-cyclin) that localizes to interchromatin granule clusters and binds CDK8. It also binds to the Aα subunit (PR65) of protein phosphatase 2A (PP2A). Binding to the Aα subunit excludes the regulatory B subunit, but not the catalytic C subunit, in a manner similar to that of T antigens of the small DNA tumor viruses. The expression of the RV-cyclin enhances the activity of immune affinity-purified CDK8 in vitro for RNA polymerase II carboxy-terminal domain (CTD) and histone H3 substrates. PP2A also enhances CDK8 kinase activity in vitro for the CTD but not for histone H3. The PP2A enhancement of CDK8 is independent of RV-cyclin expression and likely plays a role in the normal regulation of CDK8. The manipulation of endogenous PP2A activity by inhibition, amendment, or depletion confirmed its role in CDK8 activation by triggering CDK8 autophosphorylation. Although RV-cyclin and PP2A both enhance CDK8 activity, their actions are uncoupled and additive in kinase reactions. PP2A may be recruited to CDK8 in the Mediator complex by a specific PP2A B subunit or additionally by the RV-cyclin in infected cells, but the RV-cyclin appears to activate CDK8 directly and in a manner independent of its physical association with PP2A.


Assuntos
Quinase 8 Dependente de Ciclina/metabolismo , Ciclinas/metabolismo , Epsilonretrovirus/metabolismo , Infecções por Retroviridae/enzimologia , Proteínas Virais/metabolismo , Quinase 8 Dependente de Ciclina/genética , Ciclinas/genética , Epsilonretrovirus/genética , Humanos , Ligação Proteica , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Infecções por Retroviridae/genética , Infecções por Retroviridae/virologia , Regulação para Cima , Proteínas Virais/genética
14.
Viruses ; 14(5)2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35632657

RESUMO

Randall Cohrs established the Colorado Alphaherpesvirus Latency Society (CALS) in 2011 [...].


Assuntos
Alphaherpesvirinae , Colorado , Vírus Oncogênicos
15.
Viruses ; 15(1)2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36680138

RESUMO

Following the cause established twenty-two years ago, the 22nd Annual Rocky Mountain Virology Association meeting was held amidst the resplendent Rocky Mountains within the Arapahoe and Roosevelt National Forests. 116 intellectuals including both regional and international scientists as well as trainees gathered at the Colorado State University Mountain Campus for this three-day forum. Current trends in virology and prion disease research were discussed both in talks and poster presentations. This year's keynote address emphasized innate immune modulation by arboviruses while other invited speakers shared updates on noroviruses, retroviruses, coronaviruses and prion diversity. Additionally, the need for and importance of better approaches for sharing science with non-science communities via science communication was discussed. Trainees and junior investigators presented 19 talks and 31 posters. This report encapsulates selected studies presented at the 22nd Rocky Mountain National Virology Association meeting held on 30 September-2 October 2022.


Assuntos
Congressos como Assunto , Virologia , Humanos , Colorado , Príons , Retroviridae
16.
Viruses ; 13(12)2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34960661

RESUMO

Nestled within the Rocky Mountain National Forest, 114 scientists and students gathered at Colorado State University's Mountain Campus for this year's 21st annual Rocky Mountain National Virology Association meeting. This 3-day retreat consisted of 31 talks and 30 poster presentations discussing advances in research pertaining to viral and prion diseases. The keynote address provided a timely discussion on zoonotic coronaviruses, lessons learned, and the path forward towards predicting, preparing, and preventing future viral disease outbreaks. Other invited speakers discussed advances in SARS-CoV-2 surveillance, molecular interactions involved in flavivirus genome assembly, evaluation of ethnomedicines for their efficacy against infectious diseases, multi-omic analyses to define risk factors associated with long COVID, the role that interferon lambda plays in control of viral pathogenesis, cell-fusion-dependent pathogenesis of varicella zoster virus, and advances in the development of a vaccine platform against prion diseases. On behalf of the Rocky Mountain Virology Association, this report summarizes select presentations.


Assuntos
Virologia , Animais , Interações Hospedeiro-Patógeno , Humanos , Pandemias/prevenção & controle , Doenças Priônicas/diagnóstico , Doenças Priônicas/prevenção & controle , Príons/imunologia , Príons/isolamento & purificação , Príons/patogenicidade , Vacinas , Virologia/organização & administração , Viroses/diagnóstico , Viroses/epidemiologia , Viroses/prevenção & controle , Viroses/virologia , Vírus/classificação , Vírus/imunologia , Vírus/isolamento & purificação , Vírus/patogenicidade
17.
Viruses ; 13(1)2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383821

RESUMO

Due to the COVID-19 pandemic and multiple devastating forest fires, the 2020 meeting of the Rocky Mountain Virology Association was held virtually. The three-day gathering featured talks describing recent advances in virology and prion research. The keynote presentation described the measles virus paradox of immune suppression and life-long immunity. Special invited speakers presented information concerning visualizing antiviral effector cell biology in mucosal tissues, uncovering the T-cell tropism of Epstein-Barr virus type 2, a history and current survey of coronavirus spike proteins, a summary of Zika virus vaccination and immunity, the innate immune response to flavivirus infections, a discussion concerning prion disease as it relates to multiple system atrophy, and clues for discussing virology with the non-virologist. On behalf of the Rocky Mountain Virology Association, this report summarizes selected presentations.


Assuntos
Sociedades Científicas , Virologia , Animais , Aniversários e Eventos Especiais , Antivirais , COVID-19 , Infecções por Flavivirus/imunologia , Herpesvirus Humano 4 , Humanos , Imunidade , Pandemias , Príons , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinação , Zika virus
18.
Viruses ; 12(1)2020 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-31940824

RESUMO

This autumn, 95 scientists and students from the Rocky Mountain area, along with invited speakers from Colorado, California, Montana, Florida, Louisiana, New York, Maryland, and India, attended the 19th annual meeting of the Rocky Mountain Virology Association that was held at the Colorado State University Mountain Campus located in the Rocky Mountains. The two-day gathering featured 30 talks and 13 posters-all of which focused on specific areas of current virology and prion protein research. The keynote presentation reviewed new tools for microbial discovery and diagnostics. This timely discussion described the opportunities new investigators have to expand the field of microbiology into chronic and acute diseases, the pitfalls of sensitive molecular methods for pathogen discovery, and ways in which microbiology help us understand disruptions in the social fabric that pose pandemic threats at least as real as Ebola or influenza. Other areas of interest included host factors that influence virus replication, in-depth analysis of virus transcription and its effect on host gene expression, and multiple discussions of virus pathology, epidemiology as well as new avenues of diagnosis and treatment. The meeting was held at the peak of fall Aspen colors, surrounded by five mountains >11,000 ft (3.3 km), where the secluded campus provided the ideal setting for extended discussions, outdoor exercise and stargazing. On behalf of the Rocky Mountain Virology Association, this report summarizes 43 selected presentations.


Assuntos
Interações entre Hospedeiro e Microrganismos , Príons , Viroses , Vírus , Citomegalovirus/genética , Citomegalovirus/patogenicidade , Flavivirus/patogenicidade , Humanos , Proteínas Priônicas , Retroviridae/genética , Retroviridae/patogenicidade , Simplexvirus/genética , Simplexvirus/patogenicidade , Sociedades Científicas , Viroses/diagnóstico , Viroses/epidemiologia , Viroses/terapia
19.
Viruses ; 12(6)2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560467

RESUMO

Dengue virus infection is associated with the upregulation of metabolic pathways within infected cells. This effect is common to infection by a broad array of viruses. These metabolic changes, including increased glucose metabolism, oxidative phosphorylation and autophagy, support the demands of viral genome replication and infectious particle formation. The mechanisms by which these changes occur are known to be, in part, directed by viral nonstructural proteins that contact and control cellular structures and metabolic enzymes. We investigated the roles of host proteins with overarching control of metabolic processes, the transcriptional regulators, cyclin-dependent kinase 8 (CDK8) and its paralog, CDK19, as mediators of virally induced metabolic changes. Here, we show that expression of CDK8, but not CDK19, is increased during dengue virus infection in Huh7 human hepatocellular carcinoma cells, although both are required for efficient viral replication. Chemical inhibition of CDK8 and CDK19 with Senexin A during infection blocks virus-induced expression of select metabolic and autophagic genes, hexokinase 2 (HK2) and microtubule-associated protein 1 light chain 3 (LC3), and reduces viral genome replication and infectious particle production. The results further define the dependence of virus replication on increased metabolic capacity in target cells and identify CDK8 and CDK19 as master regulators of key metabolic genes. The common inhibition of CDK8 and CDK19 offers a host-directed therapeutic intervention that is unlikely to be overcome by viral evolution.


Assuntos
Quinase 8 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Vírus da Dengue/crescimento & desenvolvimento , Metabolismo Energético/fisiologia , Replicação Viral/genética , Autofagia/fisiologia , Linhagem Celular Tumoral , Quinase 8 Dependente de Ciclina/antagonistas & inibidores , Quinases Ciclina-Dependentes/antagonistas & inibidores , Dengue/patologia , Vírus da Dengue/metabolismo , Técnicas de Silenciamento de Genes , Genoma Viral/genética , Glucose/metabolismo , Hexoquinase/biossíntese , Humanos , Masculino , Proteínas Associadas aos Microtúbulos/biossíntese , Pessoa de Meia-Idade , Fosforilação Oxidativa
20.
bioRxiv ; 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32793912

RESUMO

Coronavirus disease-19 (COVID-19) emerged in November, 2019 in China and rapidly became pandemic. As with other coronaviruses, a preponderance of evidence suggests the virus originated in horseshoe bats (Rhinolophus spp.) and likely underwent a recombination event in an intermediate host prior to entry into human populations. A significant concern is that SARS-CoV-2 could become established in secondary reservoir hosts outside of Asia. To assess this potential, we challenged deer mice (Peromyscus maniculatus) with SARS-CoV-2 and found robust virus replication in the upper respiratory tract, lungs and intestines, with detectable viral RNA for up to 21 days in oral swabs and 14 days in lungs. Virus entry into the brain also occurred, likely via gustatory-olfactory-trigeminal pathway with eventual compromise to the blood brain barrier. Despite this, no conspicuous signs of disease were observed and no deer mice succumbed to infection. Expression of several innate immune response genes were elevated in the lungs, notably IFNα, Cxcl10, Oas2, Tbk1 and Pycard. Elevated CD4 and CD8ß expression in the lungs was concomitant with Tbx21, IFNγ and IL-21 expression, suggesting a type I inflammatory immune response. Contact transmission occurred from infected to naive deer mice through two passages, showing sustained natural transmission. In the second deer mouse passage, an insertion of 4 amino acids occurred to fixation in the N-terminal domain of the spike protein that is predicted to form a solvent-accessible loop. Subsequent examination of the source virus from BEI Resources indicated the mutation was present at very low levels, demonstrating potent purifying selection for the insert during in vivo passage. Collectively, this work has determined that deer mice are a suitable animal model for the study of SARS-CoV-2 pathogenesis, and that they have the potential to serve as secondary reservoir hosts that could lead to periodic outbreaks of COVID-19 in North America.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA