Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Basic Microbiol ; 63(6): 573-583, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36720046

RESUMO

Spirulina platensis is a photosynthetic, blue-green, spiral- or bulb-shaped microalgae. Due to the presence of minerals, vitamins, pigments (carotenes, phycocyanin and chlorophyll) proteins (55%-70%), carbohydrates (15%-25%), and essential fatty acids (5%-8%), it has been used as a nutritional supplement for decades. NASA successfully employed it as a nutritional supplement for astronauts on space missions then its popularity was increased. The chemical composition of Spirulina, which is rich in vitamins, minerals, phenolics, vital fatty acids, amino acids, and pigments, can be beneficial to human health when incorporated into meals. The pharmacological effects include antibacterial, anticancer, metalloprotective, immune-stimulating, and antioxidant. It modulates immunological activities and possesses anti-inflammatory qualities by preventing mast cells from releasing histamine. Due to its high quantity of protein, carbohydrate, lipid, vital amino and fatty acids, dietary minerals and vitamins, Spirulina exerts the abovementioned benefits. In this review, up-to-date and possible biological aspects, patents applied on Spirulina and heights of confirmation are addressed, and the extent of current and future exploration is also explored.


Assuntos
Microalgas , Spirulina , Humanos , Spirulina/metabolismo , Minerais/metabolismo , Carboidratos , Ácidos Graxos/metabolismo , Vitaminas/metabolismo
2.
Discov Nano ; 19(1): 85, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724833

RESUMO

The escalating global challenge of antimicrobial resistance demands innovative approaches. This review delves into the current status and future prospects of bioengineered metallic nanoparticles derived from natural sources as potent antimicrobial agents. The unique attributes of metallic nanoparticles and the abundance of natural resources have sparked a burgeoning field of research in combating microbial infections. A systematic review of the literature was conducted, encompassing a wide range of studies investigating the synthesis, characterization, and antimicrobial mechanisms of bioengineered metallic nanoparticles. Databases such as PubMed, Scopus, Web of Science, ScienceDirect, Springer, Taylor & Francis online and OpenAthen were extensively searched to compile a comprehensive overview of the topic. The synthesis methods, including green and sustainable approaches, were examined, as were the diverse biological sources used in nanoparticle fabrication. The amalgamation of metallic nanoparticles and natural products has yielded promising antimicrobial agents. Their multifaceted mechanisms, including membrane disruption, oxidative stress induction, and enzyme inhibition, render them effective against various pathogens, including drug-resistant strains. Moreover, the potential for targeted drug delivery systems using these nanoparticles has opened new avenues for personalized medicine. Bioengineered metallic nanoparticles derived from natural sources represent a dynamic frontier in the battle against microbial infections. The current status of research underscores their remarkable antimicrobial efficacy and multifaceted mechanisms of action. Future prospects are bright, with opportunities for scalability and cost-effectiveness through sustainable synthesis methods. However, addressing toxicity, regulatory hurdles, and environmental considerations remains crucial. In conclusion, this review highlights the evolving landscape of bioengineered metallic nanoparticles, offering valuable insights into their current status and their potential to revolutionize antimicrobial therapy in the future.

3.
Chem Biol Drug Des ; 102(2): 377-394, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36916008

RESUMO

Numerous nanotech arenas in therapeutic biology have recently provided a scientific platform to manufacture a considerable swath of unique chemical entities focusing on drugs. Recently, nanoparticulate drug delivery systems have emerged to deliver a specific drug to a specified site. Among all other carriers, lipids possess features exclusive to nanostructured dosage forms. The bioavailability of orally administered drugs is typically negatively affected by their poor water solubility, resulting from the unique chemical moieties introduced. Because of their unique advantages, lipid nanoparticles must become increasingly predictable as a robust delivery mechanism. The enhanced biopharmaceutical properties and significance of lipid-based targeting technologies such as liposomes, niosomes, solid lipid nanoparticles and micelles are highlighted in this review. Pharmaceutical implications of lipid nanocarriers for the transport and distribution of various therapeutic agents, such as biotechnological products and small pharmaceutical molecules, is a booming topic. Lipid nanoparticles as drug delivery systems have many appealing properties, including high biocompatibility, ease of preparation, tissue specificity, avoidance of reticuloendothelial systems, delayed drug release, scale-up feasibility, nontoxicity and targeted delivery. The use of lipid nanoparticles to enhance the transport of biopharmaceuticals is currently considered state-of-the-art. Similarly, we critically examine the upcoming guidelines that therapeutic scientists should handle.


Assuntos
Nanopartículas , Nanoestruturas , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Lipossomos , Nanopartículas/química , Nanoestruturas/química , Micelas , Lipídeos/química
4.
Chem Biol Drug Des ; 102(3): 653-667, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37062593

RESUMO

The skin is a major route of drug administration. Despite the high surface area of the skin, drug delivery via the skin route is problematic due to its physiological obstacles. The formulation scientist has developed a vesicular system to enhance the skin's absorption of bioactive substances. Among numerous vesicular systems, concept of transethosomes (TEs) introduced in 2012 are being tested for drug delivery to the dermis. When transferosomes and ethosomes interact, TEs are produced. It consists of water, ethanol, phospholipids, and an edge activator. Ethanol and the edge activator increase the absorption of medication through the skin. In the presence of ethanol and an edge activator, skin permeability can increase. The advantages of TEs include increased patient compliance, bypassing first-pass metabolism, including non-toxic raw components, being a noninvasive method of drug delivery, being more stable, biocompatible, biodegradable, and administered in semisolid form. TEs can be produced through the use of hot, cold, mechanical dispersion, and conventional techniques. The morphology, shape, size, zeta potential, drug loading efficiency, vesicle yield, biophysical interactions, and stability of TEs define them. Recent studies reported successful transdermal distribution of antifungal, antiviral, anti-inflammatory, and cardiovascular bioactive while using ethosomes with significant deeper penetration in skin. The review extensively discussed various claims on TEs developed by researchers, patents, and marketed ethosomes. However, till today no patens being granted on TEs. There are still lingering difficulties related to ethanol-based TEs that require substantial research to fix.


Assuntos
Absorção Cutânea , Pele , Humanos , Administração Cutânea , Pele/metabolismo , Sistemas de Liberação de Medicamentos , Lipossomos , Etanol/metabolismo , Portadores de Fármacos/metabolismo
5.
Chem Biol Drug Des ; 102(3): 457-470, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36856306

RESUMO

Multidrug resistance in breast cancer and the associated side-effects of anticancer therapies are significant hurdles in chemotherapy-based treatment. Biodegradable polymeric nano-based targeted drug delivery technologies showed tremendous advantages in targeted local delivery with limited off-targeted side effects. Therefore, there is a persistent need to develop targeted nanomedicine systems for treatment of breast cancer. The current research attempted to develop poly (lactic-co-glycolic acid) nanoparticles loaded with raloxifene by modified emulsification solvent diffusion evaporation method to improve oral bioavailability by using Taguchi design. It was observed that the optimized formulation (1:4 drug to polymer ratio) poly (lactic-co-glycolic acid) showed a mean particle size and Polydispersity index of 218 ± 23.7 nm and 0.231 ± 0.04, respectively. The entrapment efficiency was found to be 82.30% ± 1.02%. In vitro drug delivery was found to be 92.5% ± 1.48% in 40 h. The nanoparticles were to remain stable at 2°C-8°C even after 30 days. Differential scanning calorimetry and Fourier transform infrared spectroscopy characterization techniques showed that there was no interaction between the drug and excipient. Stability studies indicate that polymeric nanoparticles were stable at 2°C-8°C after 6 months. Raloxifene nanoparticles may be the most potent targeting moieties to treat highly invasive and metastatic MCF-7 breast cancer cells.


Assuntos
Neoplasias da Mama , Nanopartículas , Humanos , Feminino , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Cloridrato de Raloxifeno , Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos/química , Ácido Poliglicólico/química , Ácido Láctico/química , Tamanho da Partícula , Nanopartículas/química
6.
Curr Top Med Chem ; 23(30): 2877-2972, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38164722

RESUMO

Receptor tyrosine kinase (RTK) regulates multiple pathways, including Mitogenactivated protein kinases (MAPKs), PI3/AKT, JAK/STAT pathway, etc. which has a significant role in the progression and metastasis of tumor. As RTK activation regulates numerous essential bodily processes, including cell proliferation and division, RTK dysregulation has been identified in many types of cancers. Targeting RTK is a significant challenge in cancer due to the abnormal upregulation and downregulation of RTK receptors subfamily EGFR, FGFR, PDGFR, VEGFR, and HGFR in the progression of cancer, which is governed by multiple RTK receptor signalling pathways and impacts treatment response and disease progression. In this review, an extensive focus has been carried out on the normal and abnormal signalling pathways of EGFR, FGFR, PDGFR, VEGFR, and HGFR and their association with cancer initiation and progression. These are explored as potential therapeutic cancer targets and therefore, the inhibitors were evaluated alone and merged with additional therapies in clinical trials aimed at combating global cancer.


Assuntos
Neoplasias , Inibidores de Proteínas Quinases , Humanos , Receptores ErbB , Janus Quinases/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptores Proteína Tirosina Quinases , Transdução de Sinais , Fatores de Transcrição STAT/metabolismo
7.
Comb Chem High Throughput Screen ; 24(10): 1628-1643, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33380293

RESUMO

OBJECTIVE: The present investigation aimed to prepare metronidazole (MTZ) topical bigel for the effective delivery of MTZ and to study the effect of applied variables as per statistical design. The study also signifies the implementation of the statistical method using the Quality by Design technique for MTZ bigel. METHODS: The MTZ bigels were prepared as per the runs suggested by Box Behnken design (BBD) using statistical software. A total of 28 runs were suggested by the BBD, considering sodium carboxymethylcellulose (Na CMC), guar gum, hydrogel and RPM as independent variables. The prepared bigels were evaluated for organoleptic properties, percentage drug content, spreadability, viscosity, percentage in-vitro drug release, and antimicrobial efficacy. Model selectivity was ascertained by p-value considering responses along with predicted R2 and adjusted R2 values.The fitting of model was ascertained by F-value as well as "lack of fit" was carried out to find out the suitability of the experimental design. Furthermore, the characteristic distribution of data was ascertained by the "normal plot of residual" method. The compatibility of MTZ and excipients in bigels was confirmed by FTIR and the crystalline nature of MTZ in formulations was studied by DSC and XRD studies. Furthermore, the dispersion of bigel was assessed by the SEM study. RESULTS: The effect of independent variables on spreadability (mm), viscosity (cp), pH, drug release in 6 hours (%)and drug content (%) was evaluated. The optimized formulation was selected and evaluated by a polynomial equation while considering the p-value. These variables showed a significant effect on responses. A less significant difference was observed (6.37, 14463, 6.97, 86.29, and 67.47, respectively, for spreadability, viscosity, pH, and percentage drug release and % drug content) between the observed and predicted values indicating the model's suitability. The prepared bigels were found to be compatible and globules uniformly dispersed throughout the bigel. CONCLUSION: The 3D response surface design ascertained the optimal MTZ bigel at 1.25g of NaCMC, 0.5g of guargum, 37.5g hydrogel, and 1000 RPM. The selected bigel showed good antimicrobial efficacy against S. Aureus and may be considered an effective delivery vehicle for MTZ.


Assuntos
Antibacterianos/farmacologia , Desenho de Fármacos , Hidrogéis/farmacologia , Metronidazol/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Sistemas de Liberação de Medicamentos , Hidrogéis/síntese química , Hidrogéis/química , Metronidazol/síntese química , Metronidazol/química , Testes de Sensibilidade Microbiana
8.
Curr Drug Targets ; 22(5): 590-604, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32720601

RESUMO

BACKGROUND: Hepatitis C Virus (HCV) belongs to the Hepacivirus family. HCV has been designated as a very dreadful virus as it can attack the liver, causing inflammation and even may lead to cancer in chronic conditions. It was estimated that 71 million people around the world have chronic HCV infection. World Health Organization (WHO) reported that about 399000 people died because of chronic cirrhosis and liver cancer globally. In spite of the abundance of availability of drugs for the treatment of HCV, however, the issue of drug resistance surpasses all the possibilities of therapeutic management of HCV. Therefore, to address this issue of 'drug-resistance', various HCV targets were explored to quest the evaluation of the mechanism of the disease progression. METHODS: An attempt has been made in the present study to explore the various targets of HCV involved in the mechanism(s) of the disease initiation and progression and to focus on the mode of binding of ligands, which are co-crystallized at the active cavity of different HCV targets. CONCLUSION: The present study could predict some crucial features of these ligands, which possibly interacted with various amino acid residues responsible for their biological activity and molecular signaling pathway(s). Such binding mode may be considered as a template for the high throughput screening and designing of active congeneric ligands to combat HCV.


Assuntos
Antivirais , Hepatite C , Antivirais/farmacologia , Antivirais/uso terapêutico , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Humanos , Ligantes
9.
Curr Drug Targets ; 22(17): 2006-2020, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33687893

RESUMO

BACKGROUND: By the end of 2019, the sudden outbreak of the novel coronavirus disease (COVID-19) has become a global threat. It is called COVID-19 because it was caused by the novel coronavirus (SARS-COV-2) in 2019. A total of 1.9 M deaths and 87.9 M cases have been reported all over the world, where 49M cases have recovered so far. Scientists are working hard to find chemotherapeutics and vaccines for COVID-19. Mutations in SARS-CoV-2 have been observed in a combination of several hazardous stresses, making them more resistant and beneficial. So to break down the viral system, the disease targets are examined. OBJECTIVE: In today's review, a comprehensive study of spike protein explains the main purpose of the novel coronavirus and how to prevent the spread of the disease virus cross-transmission from infected to a healthy person. METHODS: Covid-19 has already been declared a pandemic by the World Health Organization (WHO) due to its result in causing death and severe illness globally. SARS-CoV-2 is highly contagious; however, the intermediate host of the novel coronavirus is not clear. To explore the mechanisms of disease, one of the viral targets, such as the spike protein that binds to human cells and causes the disease by altering its genetic structure which is considered along with potential inhibitors. RESULTS: It has been shown that the interaction of receptor-binding domain (RBD) protein of SARS- CoV-2 spike and the angiotensin-converting enzyme 2 (ACE2) host receptor and further replication of coronavirus spike protein causes its invasion in the host cell. The human Lymphocyte antigen 6 complex, Locus E (LY6E), inhibits the entry of CoV into host cells by interfering with the human gene, inducing spike protein-mediated membrane fusion. Some natural formulations have also been shown to prevent spike protein from binding to the host cell. CONCLUSION: With the development of the LY6E gene activator that can inhibit spike protein- ACE2-mediated membrane fusion, new opportunities for SARS-CoV-2 treatment may emerge. Existing antiviral fusion inhibitors and natural compounds targeting spike resistance can serve as a template for further SARS-CoV-2 drug formulation.


Assuntos
Antivirais , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2 , Antígenos de Superfície , Antivirais/farmacologia , Produtos Biológicos/farmacologia , COVID-19 , Proteínas Ligadas por GPI , Humanos , Ligação Proteica , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores
10.
Curr Top Med Chem ; 21(15): 1337-1359, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34315369

RESUMO

BACKGROUND: The novel strain SARS-CoV-2 of coronavirus diseases (COVID-19) became pandemic at the end of 2019 with an unprecedented global crisis by infecting around 11 million people in more than 200 countries. The condition has now been provoked by the demand, supply, and liquidity shocks that COVID-19 has attacked the lives of a vast population. OBJECTIVES: Researchers are therefore trying to encode and understand the viral genome sequence along with various potential targets to explore the transmission mechanism and the mode of treatment for COVID-19. The important structural proteins such as nucleocapsid protein (N), membrane protein (M), an envelope protein (E), and spike protein (S) related to COVID-19 are discussed in this manuscript. METHODS: The topology of these various targets has been explored utilizing structure-based design and crystallographic studies. RESULTS: The literature reported that the N-protein processes the viral genome to the host cell during replication. The "N-terminal domain" and "C-terminal domain" contribute towards localization in the endoplasmic region and dimerization respectively. The M protein determines the shape of coronavirus and also assists the S protein to integrate with the Golgi-endoplasmic region complex leading to the stabilization of the virion. The smallest hydrophobic viroporin termed "E" takes part in morphogenesis and pathogenesis during intracellular infection. The viral spike (S) protein attaches the cellular receptors and initiates virus-cell membrane fusions. The main protease in the proteolytic process during viral gene expression and replication has also been discussed. CONCLUSION: Currently, there is no permanent cure and treatment of COVID-19 hence researchers are repurposing a suitable combination of drugs including antiviral, antimalarial, antiparasitic, and antibacterial, hypertensive receptor blockers, immunosuppressants, anti-arthritis drugs, including ayurvedic formulations. In brief, it is justified that, for complete recovery, there is a need for deep and elaborate studies on genomic sequences and invading mechanisms in the host cell.


Assuntos
Tratamento Farmacológico da COVID-19 , Desenho de Fármacos , Descoberta de Drogas/métodos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Antivirais , COVID-19/transmissão , COVID-19/virologia , Genoma Viral , Humanos , Receptores Virais , Glicoproteína da Espícula de Coronavírus/química , Relação Estrutura-Atividade , Proteínas Virais/química , Internalização do Vírus
11.
Comb Chem High Throughput Screen ; 23(10): 1049-1063, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32598248

RESUMO

OBJECTIVE: Literature study revealed the poor mechanical strength of chitosan-based microparticles. Our research aimed at developing sufficient strength of microparticle with a suitable concentration of chitosan and non-ionic surfactants such as poloxamer-188 (pluronic). It also aimed to develop and study the effect of variables for prepared microparticles utilizing insilico screening methodology, such as reduced factorial design, followed by optimization. METHODS: Preliminary trial batches were prepared with variable concentration of chitosan and poloxamer-188 utilizing cross-linked ion-gelation technique. A 20% w/v sodium citrate solution was used as a cross-linking solution. The resolution-IV of 24-1 reduced factorial design was selected to screen the possible and significant independent variables or factors in the dosage form design. A total number of eight runs were suggested by statistical software and responses were recorded. The responses such as spreadability, pH, viscosity and percentage of drug released at 12 h were considered in the screening study. Based on the result, selected factors were included in the optimization technique, including graphical and numerical methods. RESULTS: The signified factors based on reduced two-level factorial screening design with randomized subtype, were identified by Half-normal and Pareto chart. Mathematical fitting and analysis were performed by the factorial equation during the optimization process. The validation and fitting of models were suggested and evaluated by p-value, adjusted R2, and predicted R2 values. The significant and non-significant terms were evaluated, followed by finding the optimal concentration and region with yellow color highlighted in an overlay plot. Based on the data obtained by the overlay study, the final formulation batch was prepared and the observed value was found to be pretty much nearer as compared to predicted values. Drug-polymer interaction study included attenuated total reflectance, differential scanning calorimetry, and X-Ray diffraction study. CONCLUSION: The principal of the study design was based on finding the prefixed set parameter values utilizing the concept of in-silico screening technique and optimization with a minimal number of trials and study expenses. It concluded that Poloxamer-188 (0.94%), chitosan (2.38%), swelling time (1.81 h), and parts of chitosan (78.51%) in a formulation batch would fulfill the predetermined parameter with specific values.


Assuntos
Quitosana/química , Hidrogéis/química , Piperazinas/química , Poloxâmero/química , Tensoativos/química , Avaliação Pré-Clínica de Medicamentos , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Propriedades de Superfície , Viscosidade
12.
Curr Pharm Des ; 26(15): 1666-1675, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32013823

RESUMO

BACKGROUND: Recently, in the medical and pharmaceutical fields, biopolymers are extensively used for chemical and mechanical modifications of pharmaceutical dosage forms, which add novel properties, functions, and applications. Structural modification of dosage form by polymers along with redesigning in pharmaceutical and tissue engineering fields, presently being the center of analysis for the modern research world, which utilizes the subtle instruments, precise research strategies and most significantly the excipients. METHOD: The polymer, chitosan, which is a natural linear polysaccharide composed of randomly distributed ß-(1- 4)-linked D-Glucosamine and N-acetyl-D-Glucosamine units. Chitosan has been used by researchers as a network forming or gelling agent as chitosan is economically available, possesses low immunogenicity, biocompatibility, non-toxicity, biodegradability, protects against secretion from irritation and does not suffer the danger of transmission animal infective agent. Recent studies have proved that the chitosan conjugated in various biopharmaceutical drug formulations, such as nanoparticles, have been used for the treatment of breast, skin, colon, pancreatic, prostate and lung cancer. The nanoparticles have gained significant attention of scientific groups for relevant cancer-targeting drugs and dosage form. In this connection, several articles been published on chitosan anchored nanoparticles by suitable techniques, such as ion gelation, complexation, solvent evaporation, emulsion droplet coalescence and polymerization. RESULTS: The most remarkable point is that chitosan-drug conjugated nanoparticles (CDNP) can target cancer affected cells with the least attempt to killing the neighbor host cell. It is already proved that the CDNP facilitate the more drugs uptaking or cytotoxicity to a cancerous cell. This overcomes the dosage form designing problems of complexity in the biological mechanism and cell specificity. A computer-aided pharmacokinetic study as well as in-silico design with model fitting can provide the possible finding related to target selectivity and interaction. The computer aided study also reduces time and could make the entire process much cheaper till today, very few research has been reported, such as PyRx with AutoDock, response surface methodology and molecular dynamic simulation in drug delivery for chitosan-drug conjugated nanoparticles. CONCLUSION: Therefore, cancer cell target-specific drug delivery using a natural biopolymer conjugate with a computer-aided pharmacokinetic model will be the thirst area of future research. To get successful anticancer drug formulation, in-silico pharmacokinetic modeling would minimize labor, and expenses, during and prior to the experiment has been extensively discussed in the present review.


Assuntos
Quitosana , Nanopartículas , Neoplasias , Animais , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Desenvolvimento de Medicamentos , Neoplasias/tratamento farmacológico
13.
Curr Drug Discov Technol ; 17(4): 534-541, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31971111

RESUMO

BACKGROUND: Derived from polyose, chitosan is an outstanding natural linear polysaccharide comprised of random arrangement of ß-(1-4)-linked D-Glucosamine and N-acetyl-DGlucosamine units. OBJECTIVE: Researchers have been using chitosan as a network forming or gelling agent with economically available, present polyose, low immunogenicity, biocompatibility, non-toxicity, biodegradability, protects against secretion from irritation and don't suffer the danger of transmission animal infective agent. METHODS: Furthermore, recent studies gear up the chitosan used in the development of various biopharmaceutical formulations, including nanoparticles, hydrogels, implants, films, fibers, etc. Results: These formulations produce potential activities as antimicrobials, cancer treatment, medical aid, and wound healing, controlled unleash device or drug trigger retarding device and 3DBiomedical sponge, etc. Conclusion: The present article discusses the development of various drug formulations utilizing chitosan as biopolymers for the repairing of broken tissues and healing in case of wound infection.


Assuntos
Antibacterianos/administração & dosagem , Quitosana/química , Portadores de Fármacos/química , Pele/lesões , Cicatrização/efeitos dos fármacos , Administração Cutânea , Animais , Antibacterianos/farmacocinética , Modelos Animais de Doenças , Composição de Medicamentos/métodos , Humanos , Hidrogéis/química , Ativação de Macrófagos/efeitos dos fármacos , Nanopartículas/química , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/microbiologia , Absorção Cutânea/efeitos dos fármacos , Cicatrização/imunologia
14.
Curr Pharm Des ; 25(31): 3292-3305, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31481001

RESUMO

BACKGROUND: Drug metabolism is a complex mechanism of human body systems to detoxify foreign particles, chemicals, and drugs through bio alterations. It involves many biochemical reactions carried out by invivo enzyme systems present in the liver, kidney, intestine, lungs, and plasma. After drug administration, it crosses several biological membranes to reach into the target site for binding and produces the therapeutic response. After that, it may undergo detoxification and excretion to get rid of the biological systems. Most of the drugs and its metabolites are excreted through kidney via urination. Some drugs and their metabolites enter into intestinal mucosa and excrete through feces. Few of the drugs enter into hepatic circulation where they go into the intestinal tract. The drug leaves the liver via the bile duct and is excreted through feces. Therefore, the study of total methodology of drug biotransformation and interactions with various targets is costly. METHODS: To minimize time and cost, in-silico algorithms have been utilized for lead-like drug discovery. Insilico modeling is the process where a computer model with a suitable algorithm is developed to perform a controlled experiment. It involves the combination of both in-vivo and in-vitro experimentation with virtual trials, eliminating the non-significant variables from a large number of variable parameters. Whereas, the major challenge for the experimenter is the selection and validation of the preferred model, as well as precise simulation in real physiological status. RESULTS: The present review discussed the application of in-silico models to predict absorption, distribution, metabolism, and excretion (ADME) properties of drug molecules and also access the net rate of metabolism of a compound. CONCLUSION: It helps with the identification of enzyme isoforms; which are likely to metabolize a compound, as well as the concentration dependence of metabolism and the identification of expected metabolites. In terms of drug-drug interactions (DDIs), models have been described for the inhibition of metabolism of one compound by another, and for the compound-dependent induction of drug-metabolizing enzymes.


Assuntos
Simulação por Computador , Descoberta de Drogas , Preparações Farmacêuticas/metabolismo , Algoritmos , Interações Medicamentosas , Humanos
15.
Braz. J. Pharm. Sci. (Online) ; 58: e201144, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1420507

RESUMO

Abstract The current research focused on screening and finding the significant independent variables in stavudine loaded tablet, followed by optimizing the best formulation using central composite design. The objective of the study to develop stavudine loaded controlled release tablet utilizing reduced factorial design, followed by optimization technique as well as characterization of prepared tablets. Preliminary trial batches were prepared using different grades of hydroxypropyl methylcellulose. The resolution-IV reduced factorial design was selected to screen the significant independent variables in the dosage form design. A total number of eight runs were prepared and responses were recorded. The signified factors identified by half-normal and Pareto chart. The prepared tablets are evaluated for various physiochemical characterizations. Three dependent responses such as hardness, dissolution at 6 hour and 12 hours are considered in optimization process. Later on, drug-polymer interaction study was carried out. The principal of the study design based on finding the best formulation with prefixed set parameter values utilizing the concept of screening technique. It observed that HPMC K15M (57.18 %), HPMC K100 (66.32 %) and PVP K30 (7.97 %) as best composition in a formulation batch would fulfill the predetermined parameter with specific values.


Assuntos
Estavudina/administração & dosagem , Otimização de Processos , Derivados da Hipromelose/classificação , Liberação Controlada de Fármacos , Comprimidos/administração & dosagem , Preparações Farmacêuticas/análise
17.
Int J Appl Basic Med Res ; 4(Suppl 1): S31-6, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25298940

RESUMO

AIM: The present study deals with preparation of zidovudine loaded microparticle by counter ion induced aggregation method. During this study effect of polyacrylates and hypromellose polymers on release study were investigated. MATERIALS AND METHODS: The ion induced aggregated alginate based microparticles were characterized for surface morphology, particle size analysis, drug entrapment study, in-vitro study, Fourier-transform infrared (FTIR) spectroscopy, and differential scanning calorimetry (DSC) study. RESULTS AND DISCUSSION: The result showed Eudragit RL-100 (ERL) based formulations had smoother surface as well as their mean particle sizes were found greater compared with Eudragit RS-100 (ERS) microparticles. Furthermore, drug entrapments were found to be more in ERL formulae as compared with ERS. RL3 released 101.05% drug over a period of 8(th) h and followed Higuchi profile and Fickian diffusion. Moreover, data obtained illustrated that, higher amount of quaternary ammonium group, alkali value, and glass transition temperature may be possible reason for improving permeability of ERL based formulations. It was also noticed, hyroxypropyl methylcellulose (HPMC) K4M premium grade polymer sustained drug release more than HPMC K15M. In addition, drug-excipient interaction study was carried out by FTIR and DSC study.

18.
Int J Appl Basic Med Res ; 3(1): 55-63, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23776841

RESUMO

AIM: The current paper was an attempt to design a sustained release dosage form using various grades of hydrophilic polymers, Hypromellose (hydroxyl-propyl methylcellulose [HPMC] K15M, HPMC K100M and HPMC K200M) and Polyacrylate polymers, Eudragit RL100 and Eudragit RS100 with or without incorporating ethyl cellulose on a matrix-controlled drug delivery system of Metformin hydrochloride. MATERIALS AND METHODS: Laboratory scale batches of nine tablet formulations were prepared by wet granulation technique (Low shear). Micromeritic properties of the granules were evaluated prior to compression. Tablets were characterized as crushing strength, friability, weight variation, thickness, drug content or assay and evaluated for in-vitro release pattern for 12 h using Phosphate buffer of pH 6.8 at 37 ± 0.5°C. The in-vitro release mechanism was evaluated by kinetic modeling. RESULTS AND DISCUSSION: The results obtained revealed that HPMC K200M at a concentration of 26% in formulation (F6) was able to sustain the drug release for 12 h and followed the Higuchi pattern quasi-Fickian diffusion. With that, combined effect of HPMC K15M as an extragranular section and Eudragit RS100 displayed a significant role in drug release. Dissolution data were compared with innovator for similarity factor (f2), and exhibited an acceptable value of ≥50 Three production validation scale batches were designed based on lab scale best batch and charged for stability testing, parameters were within the limit of acceptance. There was no chemical interaction found between the drug and excipients during Fourier Transform Infrared Spectroscopy (FTIR) and Differential scanning calorimetry study. CONCLUSION: Hence, combinely HPMC K200M and Eudragit RS100 at a suitable concentration can effectively be used to sustain drug release.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA