RESUMO
Current electrical contact models are occasionally insufficient at the nanoscale owing to the wide variations in outcomes between 2D mono and multi-layered and bulk materials that result from their distinctive electrostatics and geometries. Contrarily, devices based on 2D semiconductors present a significant challenge due to the requirement for electrical contact with resistances close to the quantum limit. The next generation of low-power devices is already hindered by the lack of high-quality and low-contact-resistance contacts on 2D materials. The physics and materials science of electrical contact resistance in 2D materials-based nanoelectronics, interface configurations, charge injection mechanisms, and numerical modeling of electrical contacts, as well as the most pressing issues that need to be resolved in the field of research and development, will all be covered in this review.
RESUMO
Due to their potential applications in physiological monitoring, diagnosis, human prosthetics, haptic perception, and human-machine interaction, flexible tactile sensors have attracted wide research interest in recent years. Thanks to the advances in material engineering, high performance flexible tactile sensors have been obtained. Among the representative pressure sensing materials, 2D layered nanomaterials have many properties that are superior to those of bulk nanomaterials and are more suitable for high performance flexible sensors. As a class of 2D inorganic compounds in materials science, MXene has excellent electrical, mechanical, and biological compatibility. MXene-based composites have proven to be promising candidates for flexible tactile sensors due to their excellent stretchability and metallic conductivity. Therefore, great efforts have been devoted to the development of MXene-based composites for flexible sensor applications. In this paper, the controllable preparation and characterization of MXene are introduced. Then, the recent progresses on fabrication strategies, operating mechanisms, and device performance of MXene composite-based flexible tactile sensors, including flexible piezoresistive sensors, capacitive sensors, piezoelectric sensors, triboelectric sensors are reviewed. After that, the applications of MXene material-based flexible electronics in human motion monitoring, healthcare, prosthetics, and artificial intelligence are discussed. Finally, the challenges and perspectives for MXene-based tactile sensors are summarized.
Assuntos
Inteligência Artificial , Estereognose , Humanos , Condutividade Elétrica , EletricidadeRESUMO
Silanization processes with perfluoroalkyl silanes have been demonstrated to be effective in developing advanced materials with many functional properties, including hydrophobicity, water repellency, and self-cleaning properties. However, practical industrial applications of perfluoroalkyl silanes are limited by their extremely high cost. On the basis of our recent work on photoredox catalysis for amidation with perfluoroalkyl iodides, its application for surface chemical modification on filter paper, as an illustrative example, has been developed and evaluated. Before photocatalytic amidation, the surface is functionalized with amine functional groups by silanization with 3-(trimethoxysilyl)propylamine. All chemically modified surfaces have been fully characterized by attenuated total reflection infrared (ATR-IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), and three-dimensional (3D) profiling to confirm the successful silanization and photocatalytic amidation. After surface modification of the filter papers with perfluoroalkanamide, they show high water repellency and hydrophobicity with contact angles over 120°. These filter papers possess high wetting selectivity, which can be used to effectively separate the organic and aqueous biphasic mixtures. The perfluoroalkanamide-modified filter papers can be used for separating organic/aqueous biphasic mixtures over many cycles without lowering the separating efficiency, indicating their reusability and excellent durability.
RESUMO
Facile and efficient early detection of cancer is a major challenge in healthcare. Herein we developed a novel sensor made from a polycarbonate (PC) membrane with nanopores, followed by sequence-specific Oligo RNA modification for early gastric carcinoma diagnosis. In this design, the gastric cancer antigen CA72-4 is specifically conjugated to the Oligo RNA, thereby inhibiting the electrical current through the PC membrane in a concentration-dependent manner. The device can determine the concentration of cancer antigen CA72-4 in the range from 4 to 14 U/mL, possessing a sensitivity of 7.029 µAU-1mLcm-2 with a linear regression (R2) of 0.965 and a lower detection limit of 4 U/mL. This device has integrated advantages including high specificity and sensitivity and being simple, portable, and cost effective, which collectively enables a giant leap for cancer screening technologies towards clinical use. This is the first report to use RNA aptamers to detect CA72-4 for gastric carcinoma diagnosis.
Assuntos
Carcinoma , Neoplasias Gástricas , Antígenos Glicosídicos Associados a Tumores , Biomarcadores Tumorais , Antígeno Carcinoembrionário , Análise Custo-Benefício , Detecção Precoce de Câncer , Humanos , Neoplasias Gástricas/diagnósticoRESUMO
There is an ever-growing need for more advanced methods to study the response of cancer cells to new therapies. To determine cancer cells' response from a cell-mortality perspective to various cancer therapies, we report a label-free and real time method to monitor the in situ response of individual HeLa cells using a single cell gated transistor (SCGT). As a cell undergoes apoptotic cell death, it experiences changes in morphology and ion concentrations. This change is well in line with the threshold voltage of the SCGT, which has been verified by correlating the data with the cell morphologies by scanning electron microscopy and the ion-concentration analysis by inductively-coupled plasma mass spectrometry (ICPMS). This SCGT could replace patch clamps to study single cell activity via direct measurement in real time. Importantly, this SCGT can be used to study the electrical response of a single cell to stimuli that leaves the membrane intact.
Assuntos
Análise de Célula Única , Eletrodos , Células HeLa , Humanos , Espectrometria de Massas , Fatores de Tempo , Células Tumorais CultivadasRESUMO
On-site monitoring of heavy metals in drinking water has become crucial because of several high profile instances of contamination. Presently, reliable techniques for trace level heavy metal detection are mostly laboratory based, while the detection limits of contemporary field-based methods are barely meeting the exposure limits set by regulatory bodies such as the World Health Organization (WHO). Here, we show an on-site deployable, Pb2+ sensor on a dual-gated transistor platform whose lower detection limit is 2 orders of magnitude better than the traditional sensor and 1 order of magnitude lower than the exposure limit set by WHO. The enhanced sensitivity of our design is verified by numerically solving PNP (Planck-Nernst-Poisson) model. We demonstrate that the enhanced sensitivity is due to the suppression of ionic flux. The simplicity and the robustness of the design make it applicable for on-site screening, thereby facilitating rapid response to contamination events.
Assuntos
Água Potável/química , Chumbo/análise , Íons , Limite de Detecção , Metais Pesados/análise , Poluentes Químicos da Água/análiseRESUMO
Following the trend of miniaturization as per Moore's law, and facing the strong demand of next-generation electronic devices that should be highly portable, wearable, transplantable, and lightweight, growing endeavors have been made to develop novel flexible data storage devices possessing nonvolatile ability, high-density storage, high-switching speed, and reliable endurance properties. Nonvolatile organic data storage devices including memory devices on the basis of floating-gate, charge-trapping, and ferroelectric architectures, as well as organic resistive memory are believed to be favorable candidates for future data storage applications. In this Review, typical information on device structure, memory characteristics, device operation mechanisms, mechanical properties, challenges, and recent progress of the above categories of flexible data storage devices based on organic nanoscaled materials is summarized.
RESUMO
Layered serpentine Ni3 Ge2 O5 (OH)4 is compositionally active and structurally favorable for adsorption and diffusion of reactants in oxygen evolution reactions (OER). However, one of the major problems for these materials is limited active sites and low efficiency for OER. In this regard, a new catalyst consisting of layered serpentine Ni3 Ge2 O5 (OH)4 nanosheets is introduced via a controlled one-step synthetic process where the morphology, size, and layers are well tailored. The theoretical calculations indicate that decreased layers and increased exposure of (100) facets in serpentine Ni3 Ge2 O5 (OH)4 lead to much lower Gibbs free energy in adsorption of reactive intermediates. Experimentally, it is found that the reduction in number of layers with minimized particle size exhibits plenty of highly surface-active sites of (100) facets and demonstrates a much enhanced performance in OER than the corresponding multilayered nanosheets. Such a strategy of tailoring active sites of serpentine Ni3 Ge2 O5 (OH)4 nanosheets offers an effective method to design highly efficient electrocatalysts.
RESUMO
Inspired by the highly parallel processing power and low energy consumption of the biological nervous system, the development of a neuromorphic computing paradigm to mimic brain-like behaviors with electronic components based artificial synapses may play key roles to eliminate the von Neumann bottleneck. Random resistive access memory (RRAM) is suitable for artificial synapse due to its tunable bidirectional switching behavior. In this work, a biological spiking synapse is developed with solution processed Au@Ag core-shell nanoparticle (NP)-based RRAM. The device shows highly controllable bistable resistive switching behavior due to the favorable Ag ions migration and filament formation in the composite film, and the good charge trapping and transport property of Au@Ag NPs. Moreover, comprehensive synaptic functions of biosynapse including paired-pulse depression, paired-pulse facilitation, post-tetanic potentiation, spike-time-dependent plasticity, and the transformation from short-term plasticity to long-term plasticity are emulated. This work demonstrates that the solution processed bimetal core-shell nanoparticle-based biological spiking synapse provides great potential for the further creation of a neuromorphic computing system.
Assuntos
Potenciais de Ação/fisiologia , Metais/química , Nanocompostos/química , Nanopartículas/química , Sinapses/fisiologia , Plasticidade Neuronal , Neurônios/fisiologia , Soluções , Compostos de Estanho/químicaRESUMO
In search of materials with superior capability of light-to-heat (photothermal) conversion, biocompatibility, and confinement of active photothermal materials within the cells, novel magnetic MXene-based nanocomposites are found to possess all of these criteria. The CoF@Ti3C2 composite is fabricated by a simple two-step method, including an exfoliation strategy followed by sonochemical method. MXene composite has been modified with polyvinylpyrrolidone (PVP) to improve the stability in physiological conditions. The synthesized composite was characterized with multiple analytical tools. In vitro photothermal conversion efficiency of composite was determined by the time constant method and achieved η = 34.2% with an NIR 808 nm laser. In vitro, cytotoxicity studies conducted on human malignant melanoma (Ht144) and cells validated the photothermal property of the CoF@Ti3C2-PVP composite in the presence of an NIR laser (808 nm, 1.0 W cm-2), with significantly increased cytotoxicity. Calculated IC50 values were 86 µg/mL with laser, compared to 226 µg/mL without the presence of NIR laser. Microscopic results demonstrated increased apoptosis in the presence of NIR laser. Additionally, hemolysis assay confirmed biocompatibility of CoF@Ti3C2-PVP composite for intravenous applications at the IC50 concentration. The research described in this work expands the potential applications of MXene-based nanoplatforms in the biomedical field, particularly in photothermal therapy (PTT). Furthermore, the addition of cobalt ferrite serves as a magnetic nanocomposite, which eventually helps to confine therapeutic photothermal materials inside the cells, provides enhanced photothermal conversion efficiency, and creates externally controlled theranostic nanoplatforms for cancer therapy.
Assuntos
Compostos Férricos , Nitritos , Titânio , Elementos de Transição , Humanos , Titânio/química , Compostos Férricos/farmacologia , Cobalto/farmacologia , PovidonaRESUMO
The development of artificial intelligence has posed a challenge to machine vision based on conventional complementary metal-oxide semiconductor (CMOS) circuits owing to its high latency and inefficient power consumption originating from the data shuffling between memory and computation units. Gaining more insights into the function of every part of the visual pathway for visual perception can bring the capabilities of machine vision in terms of robustness and generality. Hardware acceleration of more energy-efficient and biorealistic artificial vision highly necessitates neuromorphic devices and circuits that are able to mimic the function of each part of the visual pathway. In this paper, we review the structure and function of the entire class of visual neurons from the retina to the primate visual cortex within reach (Chapter 2) are reviewed. Based on the extraction of biological principles, the recent hardware-implemented visual neurons located in different parts of the visual pathway are discussed in detail in Chapters 3 and 4. Furthermore, valuable applications of inspired artificial vision in different scenarios (Chapter 5) are provided. The functional description of the visual pathway and its inspired neuromorphic devices/circuits are expected to provide valuable insights for the design of next-generation artificial visual perception systems.
Assuntos
Inteligência Artificial , Vias Visuais , Animais , Visão Ocular , Computadores , Percepção Visual , PrimatasRESUMO
In this work, a simple and facile approach was employed for the preparation of the ternary hybrids comprising of titanium dioxide, zinc oxide and graphitic nitride (designated as TZG-TH) with varying compositions of the components. In the context of complex and multi-stages involved for preparation of many of the THs in the literature, the present work uses the much simpler mythology for the preparation of TH. Nanofluids (NF) were formulated in ethylene glycol: water base fluid using TZG TH as the solid particles. Scanning electron microscope of TZG TH informs that the particles are agglomerated. High resolution transmission electron microscopy image of TZG-TH reveals the presence narrowly distributed spherical particles (having the sizes in the range 40 nm-100 nm) in sheet like structure The core level X-ray photoelectron spectrum of carbon and nitrogen elements reveal the existence of sp2 -bonded C in the C[bond, double bond]N and pyridinic and graphitic nitrogen in TZG-TH. X-ray diffraction patterns of TZG TH show the existence of anatase and hexagonal phase wurtzite crystalline structure in TH. The thermo-physical properties were determined for of the THNFs in order to elucidate the influence of compositions of the component and concentration ofof TZG-TH on the thermophysical properties. The TZG TH containing larger proportions of ZnO showed the maximum of 9.11 % and 12.1 % higher increase in viscosity than the binary and base fluid, respectively. The density of TZG THs varies from 1.079 to 1.095 cp, which is closer to the base fluid. The influence of TZG TH composition on refractive index and ultrasonic velocity indicates the existence of molecular level interactions between the nanoparticles in the TH and base fluid. The â¼210 % thermal conductivity enhancement was witnessed for the TZG TH, which is significantly higher than that of ZnO mono NF (26.9%) and TiO2 mono NF (33.0%). The influence of composition and concentration of TZG- TH on molecular interaction parameters like adiabatic compressibility, intermolecular free length, free volume, internal pressure and specific acoustic impedance are reported. The TZG TH based NF showed adequate dispersion stability as inferred from dynamic light scattering and UV-visible spectroscopy results. The results on TZG TH included THNF are new to the literature and would be helpful in exploring multifunctional properties with heat transfer capabilities for applications.
RESUMO
With the global escalation of concerns surrounding prostate cancer (PCa) diagnosis, reliance on the serologic prostate-specific antigen (PSA) test remains the primary approach. However, the imperative for early PCa diagnosis necessitates more effective, accurate, and rapid diagnostic point-of-care (POC) devices to enhance the result reliability and minimize disease-related complications. Among POC approaches, electrochemical biosensors, known for their amenability and miniaturization capabilities, have emerged as promising candidates. In this study, we developed an impedimetric sensing platform to detect urinary zinc (UZn) in both artificial and clinical urine samples. Our approach lies in integrating label-free impedimetric sensing and the introduction of porosity through surface modification techniques. Leveraging a cellulose acetate/reduced graphene oxide composite, our sensor's recognition layer is engineered to exhibit enhanced porosity, critical for improving the sensitivity, capture, and interaction with UZn. The sensitivity is further amplified by incorporating zincon as an external dopant, establishing highly effective recognition sites. Our sensor demonstrates a limit of detection of 7.33 ng/mL in the 0.1-1000 ng/mL dynamic range, which aligns with the reference benchmark samples from clinical biochemistry. Our sensor results are comparable with the results of inductively coupled plasma mass spectrometry (ICP-MS) where a notable correlation of 0.991 is achieved. To validate our sensor in a real-life scenario, tests were performed on human urine samples from patients being investigated for prostate cancer. Testing clinical urine samples using our sensing platform and ICP-MS produced highly comparable results. A linear correlation with R2 = 0.964 with no significant difference between two groups (p-value = 0.936) was found, thus confirming the reliability of our sensing platform.
RESUMO
Aging and genetic-related disorders in the human brain lead to impairment of daily cognitive functions. Due to their neural synaptic complexity and the current limits of knowledge, reversing these disorders remains a substantial challenge for brain-computer interfaces (BCI). In this work, a solution is provided to potentially override aging and neurological disorder-related cognitive function loss in the human brain through the application of the authors' quantum synaptic device. To illustrate this point, a quantum topological insulator (QTI) Bi2Se2Te-based synaptic neuroelectronic device, where the electric field-induced tunable topological surface edge states and quantum switching properties make them a premier option for establishing artificial synaptic neuromodulation approaches, is designed and developed. Leveraging these unique quantum synaptic properties, the developed synaptic device provides the capability to neuromodulate distorted neural signals, leading to the reversal of age-related disorders via BCI. With the synaptic neuroelectronic characteristics of this device, excellent efficacy in treating cognitive neural dysfunctions through modulated neuromorphic stimuli is demonstrated. As a proof of concept, real-time neuromodulation of electroencephalogram (EEG) deduced distorted event-related potentials (ERP) is demonstrated by modulation of the synaptic device array.
Assuntos
Interfaces Cérebro-Computador , Teoria Quântica , Humanos , Sinapses/fisiologia , Eletroencefalografia , Encéfalo/fisiologia , Potenciais Evocados/fisiologia , EletrônicaRESUMO
The dense mechanoreceptors in human fingertips enable texture discrimination. Recent advances in flexible electronics have created tactile sensors that effectively replicate slowly adapting (SA) and rapidly adapting (RA) mechanoreceptors. However, the influence of dermatoglyphic structures on tactile signal transmission, such as the effect of fingerprint ridge filtering on friction-induced vibration frequencies, remains unexplored. A novel multi-layer flexible sensor with an artificially synthesized skin surface capable of replicating arbitrary fingerprints is developed. This sensor simultaneously detects pressure (SA response) and vibration (RA response), enabling texture recognition. Fingerprint ridge patterns from notable historical figures - Rosa Parks, Richard Nixon, Martin Luther King Jr., and Ronald Reagan - are fabricated on the sensor surface. Vibration frequency responses to assorted fabric textures are measured and compared between fingerprint replicas. Results demonstrate that fingerprint topography substantially impacts skin-surface vibrational transmission. Specifically, Parks' fingerprint structure conveyed higher frequencies more clearly than those of Nixon, King, or Reagan. This work suggests individual fingerprint ridge morphological variation influences tactile perception and can confer adaptive advantages for fine texture discrimination. The flexible bioinspired sensor provides new insights into human vibrotactile processing by modeling fingerprint-filtered mechanical signals at the finger-object interface.
Assuntos
Dermatoglifia , Percepção do Tato , Vibração , Humanos , Percepção do Tato/fisiologia , Dedos/fisiologia , Dedos/anatomia & histologia , Biometria/métodos , Mecanorreceptores/fisiologia , Dispositivos Eletrônicos Vestíveis , Tato/fisiologiaRESUMO
As silicon-based transistors approach their physical size limitations, two-dimensional material-based reconfigurable functional electronic devices are considered the most promising novel device architectures beyond Moore strategies. While these devices have garnered significant attention, they often require complex device fabrication processes and extra electric fields. Additionally, the device performance is usually limited by the metal-semiconductor interface properties. In this Letter, we have constructed a reconfigurable logic device based on a WSe2 transistor with a nanofloating gate and split-gates through van der Waals integration. This device achieves a small Schottky barrier height due to the van der Waals contacts. By varying the split-gate biases, we can realize volatile reconfigurable homojunctions as well as AND, OR, NOR, and NAND logic operations with just a single device. Furthermore, with the charge trapping effect of nanofloating gate, we can also achieve nonvolatile reconfigurable homojunctions, as well as AND and OR logic operations. The volatile and nonvolatile logic operations are similar to the short-term plasticity and long-term plasticity, respectively, of synapses in the human brain. This work offers a potential approach for creating novel reconfigurable functional electronic devices with a simple fabrication process and low cost.
RESUMO
Motion recognition (MR)-based somatosensory interaction technology, which interprets user movements as input instructions, presents a natural approach for promoting human-computer interaction, a critical element for advancing metaverse applications. Herein, this work introduces a non-intrusive muscle-sensing wearable device, that in conjunction with machine learning, enables motion-control-based somatosensory interaction with metaverse avatars. To facilitate MR, the proposed device simultaneously detects muscle mechanical activities, including dynamic muscle shape changes and vibrational mechanomyogram signals, utilizing a flexible 16-channel pressure sensor array (weighing ≈0.38 g). Leveraging the rich information from multiple channels, a recognition accuracy of ≈96.06% is achieved by classifying ten lower-limb motions executed by ten human subjects. In addition, this work demonstrates the practical application of muscle-sensing-based somatosensory interaction, using the proposed wearable device, for enabling the real-time control of avatars in a virtual space. This study provides an alternative approach to traditional rigid inertial measurement units and electromyography-based methods for achieving accurate human motion capture, which can further broaden the applications of motion-interactive wearable devices for the coming metaverse age.
Assuntos
Músculo Esquelético , Dispositivos Eletrônicos Vestíveis , Humanos , Músculo Esquelético/fisiologia , Eletromiografia/métodos , Eletromiografia/instrumentação , Miografia/métodos , Miografia/instrumentação , Adulto , Masculino , Inteligência Artificial , Desenho de EquipamentoRESUMO
Metal chalcogenides are primarily used for thermoelectric applications due to their enormous potential to convert waste heat into valuable energy. Several studies focused on single or dual aliovalent doping techniques to enhance thermoelectric properties in semiconductor materials; however, these dopants enhance one property while deteriorating others due to the interdependency of these properties or may render the host material toxic. Therefore, a strategic doping approach is vital to harness the full potential of doping to improve the efficiency of thermoelectric generation while restoring the base material eco-friendly. Here, we report a well-designed counter-doped eco-friendly nanomaterial system (~70 nm) using both isovalent (cerium) and aliovalent (cobalt) in a Bi2Se3 system for enhancing energy conversion efficiency. Substituting cerium for bismuth simultaneously enhances the Seebeck coefficient and electrical conductivity via ionized impurity minimization. The boost in the average electronegativity offered by the self-doped transitional metal cobalt leads to an improvement in the degree of delocalization of the valence electrons. Hence, the new energy state around the Fermi energy serving as electron feed to the conduction band coherently improves the density of the state of conducting electrons. The resulting high power factor and low thermal conductivity contributed to the remarkable improvement in the figure of merit (zT = 0.55) at 473 K for an optimized doping concentration of 0.01 at. %. sample, and a significant nanoparticle size reduction from 400 nm to ~70 nm, making the highly performing materials in this study (Bi2-xCexCo2x3Se3) an excellent thermoelectric generator. The results presented here are higher than several Bi2Se3-based materials already reported.
RESUMO
2D metal oxides have aroused increasing attention in the field of electronics and optoelectronics due to their intriguing physical properties. In this review, an overview of recent advances on synthesis of 2D metal oxides and their electronic applications is presented. First, the tunable physical properties of 2D metal oxides that relate to the structure (various oxidation-state forms, polymorphism, etc.), crystallinity and defects (anisotropy, point defects, and grain boundary), and thickness (quantum confinement effect, interfacial effect, etc.) are discussed. Then, advanced synthesis methods for 2D metal oxides besides mechanical exfoliation are introduced and classified into solution process, vapor-phase deposition, and native oxidation on a metal source. Later, the various roles of 2D metal oxides in widespread applications, i.e., transistors, inverters, photodetectors, piezotronics, memristors, and potential applications (solar cell, spintronics, and superconducting devices) are discussed. Finally, an outlook of existing challenges and future opportunities in 2D metal oxides is proposed.
RESUMO
For decades, the widespread application of thermoelectric generators has been plagued by two major limitations: heat stagnation in its legs, which limits power conversion efficiency, and inherent brittleness of its constituents, which accelerates thermoelectric generator failure. While notable progress has been made to overcome these quintessential flaws, the state-of-the-art suffers from an apparent mismatch between thermoelectric performance and mechanical toughness. Here, we demonstrate an approach to potentially enhance the power conversion efficiency while suppressing the brittle failure in thermoelectric materials. By harnessing the enhanced thermal impedance induced by the cellular architecture of microlattices with the exceptional strength and ductility (>50% compressive strain) derived from partial carbonization, we fabricate three-dimensional (3D) architected thermoelectric generators that exhibit a specific energy absorption of ~30 J g-1 and power conversion efficiency of ~10%. We hope our work will improve future thermoelectric generator fabrication design through additive manufacturing with excellent thermoelectric properties and mechanical robustness.