Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol ; 181(1): 112-126, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31285293

RESUMO

Lateral roots (LRs) increase the contact area of the root with the rhizosphere and thereby improve water and nutrient uptake from the soil. LRs are generated either via a developmentally controlled mechanism or through induction by external stimuli, such as water and nutrient availability. Auxin regulates LR organogenesis via transcriptional activation by an auxin complex receptor. Endocytic trafficking to the vacuole positively regulates LR organogenesis independently of the auxin complex receptor in Arabidopsis (Arabidopsis thaliana). Here, we demonstrate that phosphatidylinositol 4-phosphate (PI4P) biosynthesis regulated by the phosphatidylinositol 4-kinases PI4KIIIß1 and PI4KIIIß2 is essential for the LR organogenesis driven by endocytic trafficking to the vacuole. Stimulation with Sortin2, a biomodulator that promotes protein targeting to the vacuole, altered PI4P abundance at both the plasma membrane and endosomal compartments, a process dependent on PI4K activity. These findings suggest that endocytic trafficking to the vacuole regulated by the enzymatic activities of PI4KIIIß1 and PI4KIIIß2 participates in a mechanism independent of the auxin complex receptor that regulates LR organogenesis in Arabidopsis. Surprisingly, loss-of-function of PI4KIIIß1 and PI4KIIIß2 induced both LR primordium formation and endocytic trafficking toward the vacuole. This LR primordium induction was alleviated by exogenous PI4P, suggesting that PI4KIIIß1 and PI4KIIIß2 activity constitutively negatively regulates LR primordium formation. Overall, this research demonstrates a dual role of PI4KIIIß1 and PI4KIIIß2 in LR primordium formation in Arabidopsis.


Assuntos
1-Fosfatidilinositol 4-Quinase/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Ácidos Indolacéticos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , 1-Fosfatidilinositol 4-Quinase/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Endossomos/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Transporte Proteico , Transdução de Sinais , Vacúolos/metabolismo
2.
Plants (Basel) ; 13(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38794433

RESUMO

Bacterial canker is an important disease of sweet cherry plants mainly caused by Pseudomonas syringae pv. syringae (Pss). Water deficit profoundly impairs the yield of this crop. Nitric oxide (NO) is a molecule that plays an important role in the plant defense mechanisms. To evaluate the protection exerted by NO against Pss infection under normal or water-restricted conditions, sodium nitroprusside (SNP), a NO donor, was applied to sweet cherry plants cv. Lapins, before they were exposed to Pss infection under normal or water-restricted conditions throughout two seasons. Well-watered plants treated with exogenous NO presented a lower susceptibility to Pss. A lower susceptibility to Pss was also induced in plants by water stress and this effect was increased when water stress was accompanied by exogenous NO. The lower susceptibility to Pss induced either by exogenous NO or water stress was accompanied by a decrease in the internal bacterial population. In well-watered plants, exogenous NO increased the stomatal conductance and the net CO2 assimilation. In water-stressed plants, NO induced an increase in the leaf membranes stability and proline content, but not an increase in the CO2 assimilation or the stomatal conductance.

3.
Plants (Basel) ; 13(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38999578

RESUMO

Disease severity and drought due to climate change present significant challenges to orchard productivity. This study examines the effects of spring inoculation with Pseudomonas syringae pv. syringae (Pss) on sweet cherry plants, cvs. Bing and Santina with varying defense responses, assessing plant growth, physiological variables (water potential, gas exchange, and plant hydraulic conductance), and the levels of abscisic acid (ABA) and salicylic acid (SA) under two summer irrigation levels. Pss inoculation elicited a more pronounced response in 'Santina' compared to 'Bing' at 14 days post-inoculation (dpi), and those plants inoculated with Pss exhibited a slower leaf growth and reduced transpiration compared to control plants during 60 dpi. During differential irrigations, leaf area was reduced 14% and 44% in Pss inoculated plants of 'Bing' and 'Santina' respectively, under well-watered (WW) conditions, without changes in plant water status or gas exchange. Conversely, water-deficit (WD) conditions led to gas exchange limitations and a 43% decrease in plant biomass compared to that under WW conditions, with no differences between inoculation treatments. ABA levels were lower under WW than under WD at 90 dpi, while SA levels were significantly higher in Pss-inoculated plants under WW conditions. These findings underscore the influence on plant growth during summer in sweet cherry cultivars that showed a differential response to Pss inoculations and how the relationship between ABA and SA changes in plant drought level responses.

4.
Front Plant Sci ; 13: 1060021, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36726665

RESUMO

Plants can modify their body structure, such as their root architecture, post-embryonically. For example, Arabidopsis thaliana can develop lateral roots as part of an endogenous program or in response to biotic and abiotic stimuli. Root pericycle cells are specified to become lateral root founder cells, initiating lateral root organogenesis. We used the endocytic trafficking inducer Sortin2 to examine the role of endomembrane trafficking in lateral root founder cell specification. Our results indicate that Sortin2 stimulation turns on a de novo program of lateral root primordium formation that is distinct from the endogenous program driven by auxin. In this distinctive mechanism, extracellular calcium uptake and endocytic trafficking toward the vacuole are required for lateral root founder cell specification upstream of the auxin module led by AUX/IAA28. The auxin-dependent TIR1/AFB F-boxes and auxin polar transport are dispensable for the endocytic trafficking-dependent lateral root founder cell specification; however, a different set of F-box proteins and a functional SCF complex are required. The endocytic trafficking could constitute a convenient strategy for organogenesis in response to environmental conditions.

5.
Methods Mol Biol ; 1795: 189-201, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29846929

RESUMO

Chemical genomics has proven to be a useful and successful approach to study complex systems where conventional genetics fails to render feasible results. High-throughput phenotype screenings in model organisms have identified a large collection of powerful and selective bioactive chemicals. Nevertheless, applying chemical high-throughput screening to crops still represents a big challenge for researchers. Fortunately, a circumvent approach could be taken by means of translational research. In this case, searching bioactive chemicals in a much handy model organism would be the starting point for discovering compounds with activity in relevant plants for improving a desirable trait. In this chapter, we describe strategies that have been proven to successfully translate chemical biology and genetics from unicellular yeast to Arabidopsis thaliana and finally to crops.


Assuntos
Genômica/métodos , Metabolômica/métodos , Produtos Agrícolas , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala , Modelos Biológicos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia
6.
Methods Mol Biol ; 1209: 251-64, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25117289

RESUMO

Cell proteins traffic through complex and tightly regulated pathways. Although the endomembrane system is essential, its different pathways are still not well understood. In order to dissect protein trafficking pathways, chemical genomic screenings have been performed. This strategy has been utilized to successfully discover bioactive chemicals with a specific cellular action and in most cases, tunable and reversible effects. Once the bioactive chemical is identified, further strategies can be used to find the target proteins that are important for functionality of trafficking pathways. This approach can be combined with the powerful genetic tools available for model organisms. Drug-hypersensitive and drug-resistant mutant isolation can lead to the identification of cellular pathways affected by a bioactive chemical and reveal its protein target(s). Here, we describe an approach to look for hypersensitive and resistant mutants to a specific bioactive chemical that affects protein trafficking in yeast. This approach can be followed and adapted to any other pathway or cellular process that can be screened phenotypically, serving as a guide for novel screens in yeast. More importantly, information provided by this approach can potentially be extrapolated to other organisms like plants. Thus, the method described can be of broad utility to plant biologists.


Assuntos
Fatores Imunológicos/isolamento & purificação , Biologia Molecular/métodos , Transporte Proteico/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Catepsina A/metabolismo , Genoma de Planta , Genômica , Fatores Imunológicos/administração & dosagem , Fatores Imunológicos/química , Membranas Intracelulares/efeitos dos fármacos , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA