Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139336

RESUMO

Human protein kinases are highly-sought-after drug targets, historically harnessed for treating cancer, cardiovascular disease, and an increasing number of autoimmune and inflammatory conditions. Most current treatments involve small molecule protein kinase inhibitors that interact orthosterically with the protein kinase ATP-binding pocket. As a result, these compounds are often poorly selective and highly toxic. Part I of this series reviews the role of PKC isoforms in various human diseases, featuring cancer and cardiovascular disease, as well as translational examples of PKC modulation applied to human health and disease. In the present Part II, we discuss alternative allosteric binding mechanisms for targeting PKC, as well as novel drug platforms, such as modified peptides. A major goal is to design protein kinase modulators with enhanced selectivity and improved pharmacological properties. To this end, we use molecular docking analysis to predict the mechanisms of action for inhibitor-kinase interactions that can facilitate the development of next-generation PKC modulators.


Assuntos
Doenças Cardiovasculares , Neoplasias , Humanos , Proteína Quinase C , Simulação de Acoplamento Molecular , Regulação Alostérica , Peptídeos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/química
2.
Int J Mol Sci ; 24(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38139428

RESUMO

Protein kinases are one of the most significant drug targets in the human proteome, historically harnessed for the treatment of cancer, cardiovascular disease, and a growing number of other conditions, including autoimmune and inflammatory processes. Since the approval of the first kinase inhibitors in the late 1990s and early 2000s, the field has grown exponentially, comprising 98 approved therapeutics to date, 37 of which were approved between 2016 and 2021. While many of these small-molecule protein kinase inhibitors that interact orthosterically with the protein kinase ATP binding pocket have been massively successful for oncological indications, their poor selectively for protein kinase isozymes have limited them due to toxicities in their application to other disease spaces. Thus, recent attention has turned to the use of alternative allosteric binding mechanisms and improved drug platforms such as modified peptides to design protein kinase modulators with enhanced selectivity and other pharmacological properties. Herein we review the role of different protein kinase C (PKC) isoforms in cancer and cardiovascular disease, with particular attention to PKC-family inhibitors. We discuss translational examples and carefully consider the advantages and limitations of each compound (Part I). We also discuss the recent advances in the field of protein kinase modulators, leverage molecular docking to model inhibitor-kinase interactions, and propose mechanisms of action that will aid in the design of next-generation protein kinase modulators (Part II).


Assuntos
Doenças Cardiovasculares , Neoplasias , Humanos , Doenças Cardiovasculares/tratamento farmacológico , Simulação de Acoplamento Molecular , Transdução de Sinais , Proteína Quinase C , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/química
3.
Oncol Res ; 32(7): 1163-1172, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948019

RESUMO

Background: Osteosarcoma is the most common malignant primary bone tumor. The prognosis for patients with disseminated disease remains very poor despite recent advancements in chemotherapy. Moreover, current treatment regimens bear a significant risk of serious side effects. Thus, there is an unmet clinical need for effective therapies with improved safety profiles. Taurolidine is an antibacterial agent that has been shown to induce cell death in different types of cancer cell lines. Methods: In this study, we examined both the antineoplastic and antiangiogenic effects of taurolidine in animal models of osteosarcoma. K7M2 murine osteosarcoma cells were injected, both intramuscular and intraperitoneal, into 60 BALB/c mice on day zero. Animals were then randomized to receive treatment with taurolidine 2% (800 mg/kg), taurolidine 1% (400 mg/kg), or NaCl 0.9% control for seven days by intravenous or intraperitoneal administration. Results: After 35 days, mice were euthanized, and the tumors were harvested for analysis. Eighteen mice were excluded from the analysis due to complications. Body weight was significantly lower in the 2% taurolidine intraperitoneal treatment group from day 9 to 21, consistent with elevated mortality in this group. Intraperitoneal tumor weight was significantly lower in the 1% (p = 0.003) and 2% (p = 0.006) intraperitoneal taurolidine treatment groups compared to the control. No antineoplastic effects were observed on intramuscular tumors or for intravenous administration of taurolidine. There were no significant differences in microvessel density or mitotic rate between treatment groups. Reduced body weight and elevated mortality in the 2% taurolidine intraperitoneal group suggest that the lower 1% dose is preferable. Conclusions: In conclusion, there is no evidence of antiangiogenic activity, and the antitumor effects of taurolidine on osteosarcoma observed in this study are limited. Moreover, its toxic profile grants further evaluation. Given these observations, further research is necessary to refine the use of taurolidine in osteosarcoma treatment.


Assuntos
Neoplasias Ósseas , Modelos Animais de Doenças , Osteossarcoma , Taurina , Tiadiazinas , Carga Tumoral , Animais , Taurina/análogos & derivados , Taurina/farmacologia , Taurina/uso terapêutico , Tiadiazinas/farmacologia , Tiadiazinas/uso terapêutico , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Osteossarcoma/irrigação sanguínea , Camundongos , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Carga Tumoral/efeitos dos fármacos , Densidade Microvascular/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Humanos , Neovascularização Patológica/tratamento farmacológico
4.
Sci Rep ; 14(1): 18934, 2024 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-39147769

RESUMO

The utility of spatial omics in leveraging cellular interactions in normal and diseased states for precision medicine is hampered by a lack of strategies for matching disease states with spatial heterogeneity-guided cellular annotations. Here we use a spatial context-dependent approach that matches spatial pattern detection to cell annotation. Using this approach in existing datasets from ulcerative colitis patient colonic biopsies, we identified architectural complexities and associated difficult-to-detect rare cell types in ulcerative colitis germinal-center B cell follicles. Our approach deepens our understanding of health and disease pathogenesis, illustrates a strategy for automating nested architecture detection for highly multiplexed spatial biology data, and informs precision diagnosis and therapeutic strategies.


Assuntos
Colite Ulcerativa , Colite Ulcerativa/patologia , Colite Ulcerativa/metabolismo , Colite Ulcerativa/genética , Humanos , Colo/patologia , Colo/metabolismo , Biópsia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA