Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 81(13): 5467-73, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19462968

RESUMO

A 512-channel Faraday-strip array detector has been developed and fitted to a Mattauch-Herzog geometry mass spectrograph for the simultaneous acquisition of multiple mass-to-charge values. Several advantages are realized by using simultaneous detection methods, including higher duty cycles, removal of correlated noise, and multianalyte transient analyses independent of spectral skew. The new 512-channel version offers narrower, more closely spaced pixels, providing improved spectral peak sampling and resolution. In addition, the electronics in the amplification stage of the new detector array incorporate a sample-and-hold feature that enables truly simultaneous interrogation of all 512 channels. While sensitivity and linear dynamic range remain impressive for this Faraday-based detector system, limits of detection and isotope ratio data have suffered slightly from leaky p-n junctions produced during the manufacture of the semiconductor-based amplification and readout stages. This paper describes the new 512-channel detector array, the current dominant noise sources, and the figures of merit for the device as pertaining to inductively coupled plasma ionization.

2.
Talanta ; 102: 26-33, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23182571

RESUMO

The solution-cathode glow discharge (SCGD) is an optical emission source for atomic spectrometry comprised of a moderate-power atmospheric-pressure DC glow discharge sustained directly upon the surface of an electrically conductive solution. The SCGD boasts a simple, inexpensive design and has demonstrated detection limits similar to those of more conventional excitation sources used in atomic spectrometry. Although the analytical performance of the SCGD as an optical emission source is well characterized, the mechanism through which the discharge atomizes and excites analyte from the sample solution remains a point of debate. The current paper presents visual observations of the SCGD from a variety of imaging techniques. The implications of the images regarding the mechanism of analyte solution-to-plasma transport and excitation in the SCGD are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA