Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34408016

RESUMO

During malignant progression, epithelial cancer cells dissolve their cell-cell adhesion and gain invasive features. By virtue of its dual function, ß-catenin contributes to cadherin-mediated cell-cell adhesion, and it determines the transcriptional output of Wnt signaling: via its N terminus, it recruits the signaling coactivators Bcl9 and Pygopus, and via the C terminus, it interacts with the general transcriptional machinery. This duality confounds the simple loss-of-function analysis of Wnt signaling in cancer progression. In many cancer types including breast cancer, the functional contribution of ß-catenin's transcriptional activities, as compared to its adhesion functions, to tumor progression has remained elusive. Employing the mouse mammary tumor virus (MMTV)-PyMT mouse model of metastatic breast cancer, we compared the complete elimination of ß-catenin with the specific ablation of its signaling outputs in mammary tumor cells. Notably, the complete lack of ß-catenin resulted in massive apoptosis of mammary tumor cells. In contrast, the loss of ß-catenin's transcriptional activity resulted in a reduction of primary tumor growth, tumor invasion, and metastasis formation in vivo. These phenotypic changes were reflected by stalled cell cycle progression and diminished epithelial-mesenchymal transition (EMT) and cell migration of breast cancer cells in vitro. Transcriptome analysis revealed subsets of genes which were specifically regulated by ß-catenin's transcriptional activities upon stimulation with Wnt3a or during TGF-ß-induced EMT. Our results uncouple the signaling from the adhesion function of ß-catenin and underline the importance of Wnt/ß-catenin-dependent transcription in malignant tumor progression of breast cancer.


Assuntos
Adesão Celular/fisiologia , Neoplasias Mamárias Animais/metabolismo , Transdução de Sinais/fisiologia , Proteína Wnt3A/metabolismo , beta Catenina/metabolismo , Animais , Apoptose , Ciclo Celular , Movimento Celular , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Mamárias Animais/genética , Camundongos , Camundongos Transgênicos , Invasividade Neoplásica , Metástase Neoplásica , Transcriptoma , Fator de Crescimento Transformador beta/farmacologia , Proteína Wnt3A/genética , beta Catenina/genética
2.
Cells ; 12(3)2023 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-36766786

RESUMO

Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype for which no effective targeted therapies are available. Growing evidence suggests that chemotherapy-resistant cancer cells with stem-like properties (CSC) may repopulate the tumor. The androgen receptor (AR) is expressed in up to 50% of TNBCs, and AR inhibition decreases CSC and tumor initiation. Runt-related transcription factor 1 (RUNX1) correlates with poor prognosis in TNBC and is regulated by the AR in prostate cancer. Our group has shown that RUNX1 promotes TNBC cell migration and regulates tumor gene expression. We hypothesized that RUNX1 is regulated by the AR and that both may work together in TNBC CSC to promote disease recurrence following chemotherapy. Chromatin immunoprecipitation sequencing (ChIP-seq) experiments in MDA-MB-453 revealed AR binding to RUNX1 regulatory regions. RUNX1 expression is upregulated by dihydrotestosterone (DHT) in MDA-MB-453 and in an AR+-TNBC HCI-009 patient-derived xenograft (PDX) tumors (p < 0.05). RUNX1 is increased in a CSC-like experimental model in MDA-MB-453 and SUM-159PT cells (p < 0.05). Inhibition of RUNX1 transcriptional activity reduced the expression of CSC markers. Interestingly, RUNX1 inhibition reduced cell viability and enhanced paclitaxel and enzalutamide sensitivity. Targeting RUNX1 may be an attractive strategy to potentiate the anti-tumor effects of AR inhibition, specifically in the slow-growing CSC-like populations that resist chemotherapy which lead to metastatic disease.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Linhagem Celular Tumoral , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Recidiva Local de Neoplasia , Receptores Androgênicos/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Feminino
3.
J Cell Physiol ; 227(4): 1721-30, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21688264

RESUMO

Glucocorticoids influence post-natal mammary gland development by sequentially controlling cell proliferation, differentiation, and apoptosis. In the mammary gland, it has been demonstrated that glucocorticoid treatment inhibits epithelial apoptosis in post-lactating glands. In this study, our first goal was to identify new glucocorticoid target genes that could be involved in generating this effect. Expression profiling, by microarray analysis, revealed that expression of several cell-cycle control genes was altered by dexamethasone (DEX) treatment after lactation. Importantly, it was determined that not only the exogenous synthetic hormone, but also the endogenous glucocorticoids regulated the expression of these genes. Particularly, we found that the expression of cell cycle inhibitors p21CIP1, p18INK4c, and Atm was differentially regulated by glucocorticoids through the successive stages of mammary gland development. In undifferentiated cells, DEX treatment induced their expression and reduced cell proliferation, while in differentiated cells this hormone repressed expression of those cell cycle inhibitors and promoted survival. Therefore, differentiation status determined the effect of glucocorticoids on mammary cell fate. Particularly, we have determined that p21CIP1 inhibition would mediate the activity of these hormones in differentiated mammary cells because over-expression of this protein blocked DEX-induced apoptosis protection. Together, our data suggest that the multiple roles played by glucocorticoids in mammary gland development and function might be at least partially due to the alternative roles that these hormones play on the expression of cell cycle regulators.


Assuntos
Dexametasona/farmacologia , Glucocorticoides/farmacologia , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/efeitos dos fármacos , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p18/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Proteínas de Ligação a DNA/genética , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Lactação/efeitos dos fármacos , Lactação/genética , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Serina-Treonina Quinases/genética , Proteínas Supressoras de Tumor/genética
4.
Glycobiology ; 22(10): 1374-86, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22752006

RESUMO

Mechanisms accounting for the protection of the fetal semi-allograft from maternal immune cells remain incompletely understood. In previous studies, we showed that galectin-1 (Gal1), an immunoregulatory glycan-binding protein, hierarchically triggers a cascade of tolerogenic events at the mouse fetomaternal interface. Here, we show that Gal1 confers immune privilege to human trophoblast cells through the modulation of a number of regulatory mechanisms. Gal1 was mainly expressed in invasive extravillous trophoblast cells of human first trimester and term placenta in direct contact with maternal tissue. Expression of Gal1 by the human trophoblast cell line JEG-3 was primarily controlled by progesterone and pro-inflammatory cytokines and impaired T-cell responses by limiting T cell viability, suppressing the secretion of Th1-type cytokines and favoring the expansion of CD4(+)CD25(+)FoxP3(+) regulatory T (T(reg)) cells. Targeted inhibition of Gal1 expression through antibody (Ab)-mediated blockade, addition of the specific disaccharide lactose or retroviral-mediated siRNA strategies prevented these immunoregulatory effects. Consistent with a homeostatic role of endogenous Gal1, patients with recurrent pregnancy loss showed considerably lower levels of circulating Gal1 and had higher frequency of anti-Gal1 auto-Abs in their sera compared with fertile women. Thus, endogenous Gal1 confers immune privilege to human trophoblast cells by triggering a broad tolerogenic program with potential implications in threatened pregnancies.


Assuntos
Aborto Habitual/imunologia , Galectina 1/imunologia , Trofoblastos/imunologia , Linhagem Celular , Sobrevivência Celular/imunologia , Citocinas/imunologia , Galectina 1/antagonistas & inibidores , Galectina 1/biossíntese , Humanos , Progesterona/farmacologia , Linfócitos T/citologia , Linfócitos T/imunologia , Trofoblastos/citologia
5.
Cancer Cell ; 5(3): 241-51, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15050916

RESUMO

Despite the existence of tumor-specific immune cells, most tumors have devised strategies to avoid immune attack. We demonstrate here that galectin-1 (Gal-1), a negative regulator of T cell activation and survival, plays a pivotal role in promoting escape from T cell-dependent immunity, thus conferring immune privilege to tumor cells. Blockade of immunosuppressive Gal-1 in vivo promotes tumor rejection and stimulates the generation of a tumor-specific T cell-mediated response in syngeneic mice, which are then able to resist subsequent challenge with wild-type Gal-1-sufficient tumors. Our data indicate that Gal-1 signaling in activated T cells constitutes an important mechanism of tumor-immune escape and that blockade of this inhibitory signal can allow for and potentiate effective immune responses against tumor cells, with profound implications for cancer immunotherapy.


Assuntos
Galectina 1/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Linfócitos T Citotóxicos/metabolismo , Animais , Antígenos CD4/imunologia , Antígenos CD4/metabolismo , Antígenos CD8/imunologia , Antígenos CD8/metabolismo , Sobrevivência Celular , Galectina 1/imunologia , Humanos , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Camundongos , Microscopia de Fluorescência , Transdução de Sinais , Linfócitos T Citotóxicos/imunologia , Células Tumorais Cultivadas
6.
Oncogene ; 40(43): 6195-6209, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34545187

RESUMO

Canonical Wnt/ß-catenin signaling is an established regulator of cellular state and its critical contributions to tumor initiation, malignant tumor progression and metastasis formation have been demonstrated in various cancer types. Here, we investigated how the binding of ß-catenin to the transcriptional coactivators B-cell CLL/lymphoma 9 (Bcl9) and Bcl9-Like (Bcl9L) affected mammary gland carcinogenesis in the MMTV-PyMT transgenic mouse model of metastatic breast cancer. Conditional knockout of both Bcl9 and Bcl9L resulted into tumor cell death. In contrast, disrupting the interaction of Bcl9/Bcl9L with ß-catenin, either by deletion of their HD2 domains or by a point mutation in the N-terminal domain of ß-catenin (D164A), diminished primary tumor growth and tumor cell proliferation and reduced tumor cell invasion and lung metastasis. In comparison, the disruption of HD1 domain-mediated binding of Bcl9/Bcl9L to Pygopus had only moderate effects. Interestingly, interfering with the ß-catenin-Bcl9/Bcl9L-Pygo chain of adapters only partially impaired the transcriptional response of mammary tumor cells to Wnt3a and TGFß treatments. Together, the results indicate that Bcl9/Bcl9L modulate but are not critically required for canonical Wnt signaling in its contribution to breast cancer growth and malignant progression, a notion consistent with the "just-right" hypothesis of Wnt-driven tumor progression.


Assuntos
Neoplasias da Mama/patologia , Proteínas de Ligação a DNA/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fatores de Transcrição/metabolismo , beta Catenina/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Progressão da Doença , Transição Epitelial-Mesenquimal , Feminino , Humanos , Camundongos , Invasividade Neoplásica , Metástase Neoplásica , Transplante de Neoplasias , Fatores de Transcrição/genética , Via de Sinalização Wnt , beta Catenina/genética
7.
Cancer Res ; 80(17): 3631-3648, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32586983

RESUMO

Pygopus 2 (Pygo2) is a coactivator of Wnt/ß-catenin signaling that can bind bi- or trimethylated lysine 4 of histone-3 (H3K4me2/3) and participate in chromatin reading and writing. It remains unknown whether the Pygo2-H3K4me2/3 association has a functional relevance in breast cancer progression in vivo. To investigate the functional relevance of histone-binding activity of Pygo2 in malignant progression of breast cancer, we generated a knock-in mouse model where binding of Pygo2 to H3K4me2/3 was rendered ineffective. Loss of Pygo2-histone interaction resulted in smaller, differentiated, and less metastatic tumors, due, in part, to decreased canonical Wnt/ß-catenin signaling. RNA- and ATAC-sequencing analyses of tumor-derived cell lines revealed downregulation of TGFß signaling and upregulation of differentiation pathways such as PDGFR signaling. Increased differentiation correlated with a luminal cell fate that could be reversed by inhibition of PDGFR activity. Mechanistically, the Pygo2-histone interaction potentiated Wnt/ß-catenin signaling, in part, by repressing the expression of Wnt signaling antagonists. Furthermore, Pygo2 and ß-catenin regulated the expression of miR-29 family members, which, in turn, repressed PDGFR expression to promote dedifferentiation of wild-type Pygo2 mammary epithelial tumor cells. Collectively, these results demonstrate that the histone binding function of Pygo2 is important for driving dedifferentiation and malignancy of breast tumors, and loss of this binding activates various differentiation pathways that attenuate primary tumor growth and metastasis formation. Interfering with the Pygo2-H3K4me2/3 interaction may therefore serve as an attractive therapeutic target for metastatic breast cancer. SIGNIFICANCE: Pygo2 represents a potential therapeutic target in metastatic breast cancer, as its histone-binding capability promotes ß-catenin-mediated Wnt signaling and transcriptional control in breast cancer cell dedifferentiation, EMT, and metastasis.


Assuntos
Desdiferenciação Celular/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Mamárias Experimentais/patologia , Animais , Progressão da Doença , Feminino , Técnicas de Introdução de Genes , Camundongos , Camundongos Endogâmicos C57BL
8.
BMC Cell Biol ; 10: 55, 2009 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-19615079

RESUMO

BACKGROUND: Shortly after weaning, a complex multi-step process that leads to massive epithelial apoptosis is triggered by tissue local factors in the mouse mammary gland. Several reports have demonstrated the relevance of mechanical stress to induce adaptive responses in different cell types. Interestingly, these signaling pathways also participate in mammary gland involution. Then, it has been suggested that cell stretching caused by milk accumulation after weaning might be the first stimulus that initiates the complete remodeling of the mammary gland. However, no previous report has demonstrated the impact of mechanical stress on mammary cell physiology. To address this issue, we have designed a new practical device that allowed us to evaluate the effects of radial stretching on mammary epithelial cells in culture. RESULTS: We have designed and built a new device to analyze the biological consequences of applying mechanical stress to cells cultured on flexible silicone membranes. Subsequently, a geometrical model that predicted the percentage of radial strain applied to the elastic substrate was developed. By microscopic image analysis, the adjustment of these calculations to the actual strain exerted on the attached cells was verified. The studies described herein were all performed in the HC11 non-tumorigenic mammary epithelial cell line, which was originated from a pregnant BALB/c mouse. In these cells, as previously observed in other tissue types, mechanical stress induced ERK1/2 phosphorylation and c-Fos mRNA and protein expression. In addition, we found that mammary cell stretching triggered involution associated cellular events as Leukemia Inhibitory Factor (LIF) expression induction, STAT3 activation and AKT phosphorylation inhibition. CONCLUSION: Here, we show for the first time, that mechanical strain is able to induce weaning-associated events in cultured mammary epithelial cells. These results were obtained using a new practical and affordable device specifically designed for such a purpose. We believe that our results indicate the relevance of mechanical stress among the early post-lactation events that lead to mammary gland involution.


Assuntos
Células Epiteliais/citologia , Células Epiteliais/metabolismo , Glândulas Mamárias Animais/citologia , Estresse Mecânico , Animais , Linhagem Celular , Feminino , Expressão Gênica , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Gravidez , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/genética , Fator de Transcrição STAT3/metabolismo
9.
Cancer Res ; 78(16): 4497-4511, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29748375

RESUMO

R-spondin3 (RSPO3) is a member of a family of secreted proteins that enhance Wnt signaling pathways in diverse processes, including cancer. However, the role of RSPO3 in mammary gland and breast cancer development remains unclear. In this study, we show that RSPO3 is expressed in the basal stem cell-enriched compartment of normal mouse mammary glands but is absent from committed mature luminal cells in which exogenous RSPO3 impairs lactogenic differentiation. RSPO3 knockdown in basal-like mouse mammary tumor cells reduced canonical Wnt signaling, epithelial-to-mesenchymal transition-like features, migration capacity, and tumor formation in vivo Conversely, RSPO3 overexpression, which was associated with some LGR and RUNX factors, highly correlated with the basal-like subtype among patients with breast cancer. Thus, we identified RSPO3 as a novel key modulator of breast cancer development and a potential target for treatment of basal-like breast cancers.Significance: These findings identify RSPO3 as a potential therapetuic target in basal-like breast cancers.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/16/4497/F1.large.jpg Cancer Res; 78(16); 4497-511. ©2018 AACR.


Assuntos
Neoplasias da Mama/genética , Mama/metabolismo , Neoplasias Mamárias Animais/genética , Trombospondinas/genética , Animais , Mama/patologia , Neoplasias da Mama/patologia , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Subunidades alfa de Fatores de Ligação ao Core/genética , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Mamárias Animais/patologia , Camundongos , Receptores Acoplados a Proteínas G/genética , Via de Sinalização Wnt/genética
10.
Oncotarget ; 8(51): 88475-88487, 2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-29179450

RESUMO

Angiotensin (Ang) II, the main effector peptide of the renin-angiotensin system, has been implicated in multiple aspects of cancer progression such as proliferation, migration, invasion, angiogenesis and metastasis. Ang-(1-7), is a biologically active heptapeptide, generated predominantly from AngII by the enzymatic activity of angiotensin converting enzyme 2. Previous studies have shown that Ang-(1-7) counterbalances AngII actions in different pathophysiological settings. In this study, we have analysed the impact of Ang-(1-7) on AngII-induced pro-tumorigenic features on normal murine mammary epithelial cells NMuMG and breast cancer cells MDA-MB-231. AngII stimulated the activation of the survival factor AKT in NMuMG cells mainly through the AT1 receptor. This PI3K/AKT pathway activation also promoted epithelial-mesenchymal transition (EMT). Concomitant treatment of NMuMG cells with AngII and Ang-(1-7) completely abolished EMT features induced by AngII. Furthermore, Ang-(1-7) abrogated AngII induced migration and invasion of the MDA-MB-231 cells as well as pro-angiogenic events such as the stimulation of MMP-9 activity and VEGF expression. Together, these results demonstrate for the first time that Ang-(1-7) counteracts tumor aggressive signals stimulated by AngII in breast cancer cells emerging the peptide as a potential therapy to prevent breast cancer progression.

11.
Medicina (B Aires) ; 66(4): 357-62, 2006.
Artigo em Espanhol | MEDLINE | ID: mdl-16977975

RESUMO

Recent evidence indicates that protein-glycan interactions play a critical role in different events associated with the physiology of T-cell responses including thymocyte maturation, T-cell activation, lymphocyte migration and T-cell apoptosis. Glycans decorating T-cell surface glycoproteins can modulate T-cell physiology by specifically interacting with endogenous lectins including selectins and galectins. These endogenous lectins are capable of recognizing sugar structures localized on T-cell surface glycoproteins and trigger different signal transduction pathways leading to differentiation, proliferation, cell cycle regulation or apoptosis. Protein-carbohydrate interactions may be controlled at different levels, including regulated expression of lectins during T-cell maturation and differentiation and the spatio-temporal regulation of glycosyltransferases and glycosidases, which create and modify sugar structures present in T-cell surface glycoproteins. This article briefly reviews the mechanisms by which protein-carbohydrate interactions modulate immunological processes such as T-cell activation, migration and apoptosis.


Assuntos
Polissacarídeos/metabolismo , Proteínas/metabolismo , Linfócitos T/fisiologia , Apoptose , Comunicação Celular , Galectinas/química , Galectinas/imunologia , Galectinas/metabolismo , Glicosilação , Glicosiltransferases , Humanos , Polissacarídeos/química , Polissacarídeos/imunologia , Ligação Proteica/imunologia , Proteínas/química , Proteínas/imunologia , Selectinas/química , Selectinas/imunologia , Selectinas/metabolismo
12.
Oncotarget ; 7(6): 6552-65, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26735887

RESUMO

Runx1 participation in epithelial mammary cells is still under review. Emerging data indicates that Runx1 could be relevant for breast tumor promotion. However, to date no studies have specifically evaluated the functional contribution of Runx1 to control gene expression in mammary epithelial tumor cells. It has been described that Runx1 activity is defined by protein context interaction. Interestingly, Foxp3 is a breast tumor suppressor gene. Here we show that endogenous Runx1 and Foxp3 physically interact in normal mammary cells and this interaction blocks Runx1 transcriptional activity. Furthermore we demonstrate that Runx1 is able to bind to R-spondin 3 (RSPO3) and Gap Junction protein Alpha 1 (GJA1) promoters. This binding upregulates Rspo3 oncogene expression and downregulates GJA1 tumor suppressor gene expression in a Foxp3-dependent manner. Moreover, reduced Runx1 transcriptional activity decreases tumor cell migration properties. Collectively, these data provide evidence of a new mechanism for breast tumor gene expression regulation, in which Runx1 and Foxp3 physically interact to control mammary epithelial cell gene expression fate. Our work suggests for the first time that Runx1 could be involved in breast tumor progression depending on Foxp3 availability.


Assuntos
Adenocarcinoma/metabolismo , Neoplasias da Mama/metabolismo , Conexina 43/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica , Trombospondinas/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Apoptose , Western Blotting , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Movimento Celular , Proliferação de Células , Imunoprecipitação da Cromatina , Feminino , Imunofluorescência , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Microscopia de Fluorescência , Regiões Promotoras Genéticas/genética , Células Tumorais Cultivadas , Cicatrização , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Biochim Biophys Acta ; 1572(2-3): 274-84, 2002 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-12223275

RESUMO

Galectins are members of a highly conserved family of beta-galactoside-binding animal lectins. Presently, more than 14 members have been identified and additional homologues are likely to be discovered. Given their conservation throughout animal evolution, it is not surprising that they could play key roles in innate and adaptive immune responses, through sugar-dependent and -independent mechanisms. Recently, it has become increasingly clear that galectins can differentially affect cellular activation and function. These biological effects attracted attention of researchers in cell biology, biochemistry, glycobiology and immunology, not only in the mode of action of galectins, but also in their role as putative modulators of immune surveillance, apoptosis, cell adhesion and chemotaxis. Here we will summarize the state-of-the-art of the effects of galectins in inflammatory and immunomodulatory processes. In addition, we will discuss in-depth the current knowledge about the effects of this enigmatic family of animal lectins and their glycoligands in the progression, diagnosis and treatment of different pathological processes such as autoimmunity, allergy, infection and chronic inflammation.


Assuntos
Adjuvantes Imunológicos/fisiologia , Hemaglutininas/fisiologia , Linfócitos T/efeitos dos fármacos , Adjuvantes Imunológicos/farmacologia , Animais , Apoptose , Doenças Autoimunes/etiologia , Doenças Autoimunes/terapia , Divisão Celular/efeitos dos fármacos , Galectinas , Hemaglutininas/imunologia , Hemaglutininas/farmacologia , Humanos , Hipersensibilidade/etiologia , Hipersensibilidade/terapia , Imunidade , Inflamação/etiologia , Inflamação/terapia , Linfonodos/efeitos dos fármacos , Baço/efeitos dos fármacos , Timo/efeitos dos fármacos
14.
J Leukoc Biol ; 71(5): 741-52, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11994498

RESUMO

Over the last decade, we have witnessed an explosion of information regarding the function of glycoconjugates, carbohydrate-binding proteins, and the elucidation of the sugar code. This progress has yielded not only important insights into fundamental areas of glycobiology but has also influenced other fields such as immunology and molecular medicine. A family of galactoside-binding proteins, called galectins, has emerged recently as a novel kind of bioactive molecules with powerful, immunoregulatory functions. Different members of this family have been shown to modulate positively or negatively multiple steps of the inflammatory response, such as cell-matrix interactions, cell trafficking, cell survival, cell-growth regulation, chemotaxis, and proinflammatory cytokine secretion. To introduce a comprehensive overview of these new advances, here we will explore the molecular mechanisms and biochemical pathways involved in these functions. We will also examine the role of these proteins in the modulation of different pathological processes, such as chronic inflammation, autoimmunity, infection, allergic reactions, and tumor spreading. Understanding the intimate mechanisms involved in galectin functions will help to delineate selective and novel strategies for disease intervention and diagnosis.


Assuntos
Inflamação/imunologia , Lectinas/fisiologia , Animais , Apoptose , Adesão Celular , Divisão Celular , Quimiotaxia , Citocinas/biossíntese , Matriz Extracelular/metabolismo , Glicoconjugados/fisiologia , Humanos , Imunossupressores/uso terapêutico , Inflamação/tratamento farmacológico , Lectinas/uso terapêutico , Metástase Neoplásica
15.
Autoimmunity ; 35(1): 29-37, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11908704

RESUMO

Apoptosis of enterocytes is a feature that characterises the development of lesions in coeliac disease (CD). However, the intracellular pathways that lead to apoptosis of enterocytes have not been completely clarified. Bak is a member of the Bcl-2 family of proteins that acts as an endogenous promoter of apoptosis in normal enterocytes. However, its role in coeliac lesions has not been explored. We used small intestinal mucosa from patients with CD to evaluate the differential expression of members of the Bcl-2 family of proteins. Gene expression of Bak was analysed by RT-PCR of biopsies from 14 patients with untreated CD and from 19 controls without CD. In these samples, we also investigated the localisation of the Bak protein by immunohistochemistry and its apoptotic activity. In patients with untreated CD there was a 2.3-fold higher expression of Bak mRNA (p = 0.026), without significant differences in the expression of related genes bax or bcl-2. The higher expression of interferon gamma (IFN-gamma) (p = 0.036) and the higher number of apoptotic cells identified by the TUNEL method (p = 0.032) confirmed the proapoptotic status in the intestinal mucosa of CD patients. We found a significant positive correlation (p < 0.0001) between the expression of IFN-gamma and Bak mRNA in patients with untreated CD. The expression of Bak protein was higher in patients with CD, and the immunoreactivity was almost restricted to the epithelium. We found that Bak mRNA and its protein were overexpressed in the intestinal lesions of CD patients and that IFNgamma confers increased susceptibility for enterocytes to undergo apoptosis via upregulation of Bak.


Assuntos
Doença Celíaca/genética , Doença Celíaca/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Apoptose , Estudos de Casos e Controles , Doença Celíaca/patologia , Criança , Pré-Escolar , Duodeno/metabolismo , Duodeno/patologia , Enterócitos/metabolismo , Enterócitos/patologia , Expressão Gênica , Humanos , Imuno-Histoquímica , Lactente , Interferon gama/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Jejuno/metabolismo , Jejuno/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2
16.
J Exp Med ; 209(11): 1985-2000, 2012 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-23027923

RESUMO

Kaposi's sarcoma (KS), a multifocal vascular neoplasm linked to human herpesvirus-8 (HHV-8/KS-associated herpesvirus [KSHV]) infection, is the most common AIDS-associated malignancy. Clinical management of KS has proven to be challenging because of its prevalence in immunosuppressed patients and its unique vascular and inflammatory nature that is sustained by viral and host-derived paracrine-acting factors primarily released under hypoxic conditions. We show that interactions between the regulatory lectin galectin-1 (Gal-1) and specific target N-glycans link tumor hypoxia to neovascularization as part of the pathogenesis of KS. Expression of Gal-1 is found to be a hallmark of human KS but not other vascular pathologies and is directly induced by both KSHV and hypoxia. Interestingly, hypoxia induced Gal-1 through mechanisms that are independent of hypoxia-inducible factor (HIF) 1α and HIF-2α but involved reactive oxygen species-dependent activation of the transcription factor nuclear factor κB. Targeted disruption of Gal-1-N-glycan interactions eliminated hypoxia-driven angiogenesis and suppressed tumorigenesis in vivo. Therapeutic administration of a Gal-1-specific neutralizing mAb attenuated abnormal angiogenesis and promoted tumor regression in mice bearing established KS tumors. Given the active search for HIF-independent mechanisms that serve to couple tumor hypoxia to pathological angiogenesis, our findings provide novel opportunities not only for treating KS patients but also for understanding and managing a variety of solid tumors.


Assuntos
Galectina 1/metabolismo , Neovascularização Patológica/metabolismo , Polissacarídeos/metabolismo , Sarcoma de Kaposi/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Hipóxia Celular , Linhagem Celular Tumoral , Células Cultivadas , Galectina 1/genética , Galectina 1/imunologia , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Herpesvirus Humano 8/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Hipóxia , Immunoblotting , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Neovascularização Patológica/genética , Neovascularização Patológica/prevenção & controle , Ligação Proteica/efeitos dos fármacos , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sarcoma de Kaposi/tratamento farmacológico , Sarcoma de Kaposi/genética , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Cancer Immunol Immunother ; 56(4): 491-9, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16900348

RESUMO

Tumors escape from immune surveillance by producing immunosuppressive cytokines and proapototic factors, including TGF-beta and galectin-1 (Gal-1). Since immunosuppressive mechanisms might act in concert to confer tumor-immune privilege, we investigated the potential cross talk between TGF-beta and Gal-1 in highly metastatic mammary adenocarcinoma (LM3) cells. While Gal-1 treatment was not capable of regulating TGF-beta synthesis, a pronounced and dose-dependent increase in Gal-1 expression was observed when tumor cells were treated with TGF-beta(1. )This effect was also observed in the murine lung adenocarcinoma LP07 and in the human breast adenocarcinoma MCF-7 cell lines. TGF-beta1-mediated upregulation of Gal-1 expression was specifically mediated by TbetaRI and TbetaRII, since it was abrogated when LM3 cells were infected with retroviral vectors expressing the dominant negative forms of these receptors. In addition, gal-1 gene sequence analysis revealed the presence of three putative binding sites for Smad4 and Smad3 transcription factors, consistent with the ability of TGF-beta(1) to trigger a Smad-dependent signaling pathway in these cells. Thus, TGF-beta(1) may trigger a Smad-dependent pathway to control Gal-1 expression, suggesting that distinct mechanisms might cooperate in tilting the balance toward an immunosuppressive environment at the tumor site.


Assuntos
Adenocarcinoma/imunologia , Galectina 1/biossíntese , Neoplasias Mamárias Experimentais/imunologia , Fator de Crescimento Transformador beta1/metabolismo , Evasão Tumoral/fisiologia , Adenocarcinoma/metabolismo , Animais , Western Blotting , Linhagem Celular Tumoral , Feminino , Imunofluorescência , Galectina 1/genética , Galectina 1/imunologia , Humanos , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Receptor Cross-Talk/imunologia , Proteínas Smad/imunologia , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/imunologia
18.
Glycoconj J ; 19(7-9): 565-73, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-14758081

RESUMO

Galectins are a large family of structurally related beta-galactoside-binding proteins that play a pivotal role in the control of cell differentiation, proliferation, activation and apoptosis of many different cell types including immune cells. By crosslinking specific glycoconjugates, different members of the galectin family behave as pro-inflammatory or anti-inflammatory "cytokine-like" mediators, acting at different levels of innate and adaptive immune responses. Here we will review recent advances on the role of galectins in key events of the immune and inflammatory response, such as tolerance induction, cell cycle progression, cell adhesion, chemotaxis, antigen presentation and apoptosis. In particular we will examine the influence of individual members of the galectin family in the physiology of different immune cell types involved in innate and adaptive immune responses. Moreover, we will discuss the importance of these sugar-binding proteins as therapeutic targets in Th1- and Th2-mediated immune disorders, an exciting area for future research.


Assuntos
Adjuvantes Imunológicos , Galectinas/imunologia , Imunidade Inata/imunologia , Animais , Autoimunidade/imunologia , Galectinas/metabolismo , Humanos , Inflamação/imunologia , Leucócitos/imunologia
19.
Cancer Immunol Immunother ; 50(11): 597-603, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11807623

RESUMO

We have demonstrated that a single low dose of cyclophosphamide has an antimetastatic effect on lymphoma (L-TACB)-bearing rats by modulating the host immune response. Galectin-1, a member of the galectin family with specificity for beta-galactosides, has potent immunomodulatory properties by regulating cell-matrix interactions and T-cell apoptosis. Since galectin-1 is expressed by highly metastatic tumors, in the present study we investigated the participation of this beta-galactoside-binding protein in cyclophosphamide-induced immunomodulation. Inbred " e" rats were s.c. challenged with L-TACB. After 14 days, half of the animals received an i.p. injection of cyclophosphamide (10 mg/kg), and on day 21 tumors and spleens were excised. Cell extracts were prepared and galectin-1 expression was determined by Western blot analysis and correlated with Bcl-2 expression levels and the DNA fragmentation profile. Expression of galectin-1 was significantly decreased in tumors from cyclophosphamide-treated rats compared to non-treated rats. The same effect was observed regarding expression of Bcl-2 by tumors. In contrast, expression of Bcl-2 was significantly higher in spleens from treated animals than in non-treated rats. This effect correlated with a decreased intensity in the pattern of DNA fragmentation of spleen cells from cyclophosphamide-treated animals. Our results suggest that a single low dose of cyclophosphamide modulates the expression of galectin-1 and Bcl-2 by tumors, which could in turn influence the apoptotic threshold of spleen mononuclear cells. This mechanism could explain, at least in part, the antimetastatic effect evidenced in our tumor experimental model.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Antineoplásicos Alquilantes/administração & dosagem , Ciclofosfamida/administração & dosagem , Hemaglutininas/imunologia , Linfoma/tratamento farmacológico , Linfoma/imunologia , Proteínas Proto-Oncogênicas c-bcl-2/imunologia , Adjuvantes Imunológicos/uso terapêutico , Animais , Antineoplásicos Alquilantes/uso terapêutico , Ciclofosfamida/uso terapêutico , Feminino , Galectina 1 , Hemaglutininas/biossíntese , Metástase Linfática , Linfoma/patologia , Masculino , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Ratos
20.
Biol Reprod ; 68(1): 51-9, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12493695

RESUMO

Galectin-1, a highly conserved beta-galactoside-binding protein, induces apoptosis of activated T cells and suppresses the development of autoimmunity and chronic inflammation. To gain insight regarding the potential role of galectin-1 as a novel mechanism of immune privilege, we investigated expression and ultrastructural localization of galectin-1 in rat testis. Galectin-1 expression was assessed by Western blot analysis and immunocytochemical localization in testes obtained from rats aged from 9 to 60 days. Expression of this carbohydrate-binding protein was developmentally regulated, and its immunolabeling exhibited a stage-specific pattern throughout the spermatogenic process. Immunogold staining using the anti-galectin-1 antibody revealed the typical Sertoli cell profile in the seminiferous epithelium, mainly at stages X-II. During spermiation (stages VI-VIII), a strong labeling was observed at the luminal pole of seminiferous epithelium, localized on apical stalks of Sertoli cells, on heads of mature spermatids, and on bodies of residual cytoplasm. Moreover, spermatozoa released into the lumen showed a strong immunostaining. Following spermiation (stage VIII), galectin-1 expression was restored at the basal portion of Sertoli cells and progressively spread out through the whole cells as differentiation of germinal cells proceeded. Immunoelectron microscopy confirmed distribution of galectin-1 in nuclei and cytoplasmic projections of Sertoli cells and on heads and tails of late spermatids and residual bodies. Surface localization of galectin-1 was evidenced in spermatozoa from caput epididymis. Thus, the regulated expression of galectin-1 during the spermatogenic cycle suggests a novel role for this immunosuppressive lectin in reproductive biology.


Assuntos
Galectina 1/metabolismo , Espermatogênese/fisiologia , Testículo/metabolismo , Animais , Apoptose , Western Blotting , Epididimo/citologia , Epididimo/metabolismo , Galactosídeos/metabolismo , Imuno-Histoquímica , Masculino , Microscopia Imunoeletrônica , Ratos , Ratos Wistar , Espermatozoides/metabolismo , Espermatozoides/ultraestrutura , Testículo/crescimento & desenvolvimento , Testículo/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA