Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Brain ; 147(4): 1197-1205, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38141063

RESUMO

Dysfunctional RNA processing caused by genetic defects in RNA processing enzymes has a profound impact on the nervous system, resulting in neurodevelopmental conditions. We characterized a recessive neurological disorder in 18 children and young adults from 10 independent families typified by intellectual disability, motor developmental delay and gait disturbance. In some patients peripheral neuropathy, corpus callosum abnormalities and progressive basal ganglia deposits were present. The disorder is associated with rare variants in NUDT2, a mRNA decapping and Ap4A hydrolysing enzyme, including novel missense and in-frame deletion variants. We show that these NUDT2 variants lead to a marked loss of enzymatic activity, strongly implicating loss of NUDT2 function as the cause of the disorder. NUDT2-deficient patient fibroblasts exhibit a markedly altered transcriptome, accompanied by changes in mRNA half-life and stability. Amongst the most up-regulated mRNAs in NUDT2-deficient cells, we identified host response and interferon-responsive genes. Importantly, add-back experiments using an Ap4A hydrolase defective in mRNA decapping highlighted loss of NUDT2 decapping as the activity implicated in altered mRNA homeostasis. Our results confirm that reduction or loss of NUDT2 hydrolase activity is associated with a neurological disease, highlighting the importance of a physiologically balanced mRNA processing machinery for neuronal development and homeostasis.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Criança , Adulto Jovem , Humanos , RNA Mensageiro/genética , Monoéster Fosfórico Hidrolases/genética , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , Nudix Hidrolases
2.
J Hepatol ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936554

RESUMO

BACKGROUND & AIMS: Gut bacterial translocation contributes to immune dysfunction and spontaneous bacterial peritonitis (SBP) in cirrhosis. We hypothesized that exposure of peritoneal macrophages (PMs) to bacterial DNA results in type-I interferon (IFN) production, shaping subsequent immune responses, inflammasome activation, and the release of damage-associated molecular patterns (DAMPs). METHODS: PMs from patients with cirrhosis were stimulated with E. coli single-stranded DNA (ssDNA), lipopolysaccharide LPS, and IFN or infected with E. coli, S. aureus, and Group B streptococcus in vitro. Cytokine release, inflammasome activation, and DAMP release were quantified by quantitative-PCR, ELISA, western blots, and reporter cells employing primary PMs, monocytes, and caspase-deficient THP-1 macrophages. Serum progranulin concentration was correlated with transplant-free survival in 77 patients with SBP. RESULTS: E. coli ssDNA induced strong type-I IFN activity in PMs and monocytes, priming them for enhanced LPS-mediated tumor necrosis factor production without toll-like receptor 4 tolerance induction. During in vitro macrophage bacterial infection, type-I IFN release aligned with upregulated expression of IFN-regulatory factors (IRF)1/2 and guanylate binding proteins (GBP)2/5. PMs upregulated inflammasome-associated proteins and type-I IFN upon E. coli ssDNA exposure and released interleukin-1ß upon bacterial infection. Proteomic screen in mouse macrophages revealed progranulin as being caspase-11-dependent during E. coli infection. PMs and THP-1 macrophages released significant amounts of progranulin when infected with S. aureus or E. coli via gasdermin-D in a type-I IFN and caspase-5-dependent manner. During SBP, PMs upregulated IRF1, GBP2/5 and caspase-5 and higher serum progranulin concentrations were indicative of lower 90-day transplant-free survival after SBP. CONCLUSIONS: Type-I IFN shapes peritoneal immune responses and regulates caspase-5-mediated progranulin release during SBP. IMPACT AND IMPLICATIONS: Patients with cirrhosis exhibit impaired immune responses and increased susceptibility to bacterial infections. This study reveals that type-I interferon responses, triggered by pathogen-associated molecular patterns, are crucial in regulating macrophage activation and priming them for inflammatory responses. Additionally, we elucidate the mechanisms by which type-I interferons promote the release of progranulin from macrophages during spontaneous bacterial peritonitis. Our findings enhance understanding of how bacterial translocation affects immune responses, identify novel biomarkers for inflammasome activation during infections, and point to potential therapeutic targets.

3.
J Pediatr Hematol Oncol ; 46(3): e251-e253, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38408159

RESUMO

The plexiform fibromyxoma is a rare mesenchymal tumor in adults that generally originates in the antrum of stomach, being its occurrence in pediatric patients exceptional. It was classified as a distinct entity by World Health Organization in 2010. No recurrences and metastases have been documented in many of the reported patients to date, being the surgical treatment curative. We report the case of a 3-month-old infant who presented to the emergency department with an episode of intestinal subocclusion requiring an emergent surgery. During the surgical intervention, a mass was identified in the jejunum, causing partial occlusion of its lumen. The surgical pathology report revealed an infiltrative tumor composed of spindle-shaped cells disposed in a stroma with a plexiform pattern alternating myxoid areas. These findings and the immunohistochemical characteristics of the neoplastic cells led to classify the tumor as a plexiform fibromyxoma. A description of the immunophenotype of this tumor is made and differential diagnosis with other gastrointestinal tumors is also discussed.


Assuntos
Fibroma , Neoplasias de Tecidos Moles , Neoplasias Gástricas , Humanos , Lactente , Fibroma/cirurgia , Fibroma/diagnóstico , Fibroma/patologia , Neoplasias Gástricas/diagnóstico
4.
Eur J Immunol ; 52(6): 907-923, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35334124

RESUMO

TLRs mediate the recognition of microbial and endogenous insults to orchestrate the inflammatory response. TLRs localize to the plasma membrane or endomembranes, depending on the member, and rely critically on ER-resident chaperones to mature and reach their subcellular destinations. The chaperone canopy FGF signaling regulator 3 (CNPY3) is necessary for the proper trafficking of multiple TLRs including TLR1/2/4/5/9 but not TLR3. However, the exact role of CNPY3 in inflammatory signalling downstream of TLRs has not been studied in detail. Consistent with the reported client specificity, we report here that functional loss of CNPY3 in engineered macrophages impairs downstream signalling by TLR2 but not TLR3. Unexpectedly, CNPY3-deficient macrophages show reduced IL-1ß and IL-18 processing and production independent of the challenged upstream TLR species, demonstrating a separate, specific role for CNPY3 in inflammasome activation. Mechanistically, we document that CNPY3 regulates caspase-1 localization to the apoptosis speck and autoactivation of caspase-1. Importantly, we were able to recapitulate these findings in macrophages from an early infantile epileptic encephalopathy (EIEE) patient with a novel CNPY3 loss-of-function variant. Summarizing, our findings reveal a hitherto unknown, TLR-independent role of CNPY3 in inflammasome activation, highlighting a more complex and dedicated role of CNPY3 to the inflammatory response than anticipated.


Assuntos
Inflamassomos , Chaperonas Moleculares/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Caspase 1/metabolismo , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
5.
Crit Care ; 27(1): 372, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37759239

RESUMO

BACKGROUND: Sepsis-induced immunosuppression is a frequent cause of opportunistic infections and death in critically ill patients. A better understanding of the underlying mechanisms is needed to develop targeted therapies. Circulating bile acids with immunosuppressive effects were recently identified in critically ill patients. These bile acids activate the monocyte G-protein coupled receptor TGR5, thereby inducing profound innate immune dysfunction. Whether these mechanisms contribute to immunosuppression and disease severity in sepsis is unknown. The aim of this study was to determine if immunosuppressive bile acids are present in endotoxemia and septic shock and, if so, which patients are particularly at risk. METHODS: To induce experimental endotoxemia in humans, ten healthy volunteers received 2 ng/kg E. coli lipopolysaccharide (LPS). Circulating bile acids were profiled before and after LPS administration. Furthermore, 48 patients with early (shock onset within < 24 h) and severe septic shock (norepinephrine dose > 0.4 µg/kg/min) and 48 healthy age- and sex-matched controls were analyzed for circulating bile acids. To screen for immunosuppressive effects of circulating bile acids, the capability to induce TGR5 activation was computed for each individual bile acid profile by a recently published formula. RESULTS: Although experimental endotoxemia as well as septic shock led to significant increases in total bile acids compared to controls, this increase was mild in most cases. By contrast, there was a marked and significant increase in circulating bile acids in septic shock patients with severe liver failure compared to healthy controls (61.8 µmol/L vs. 2.8 µmol/L, p = 0.0016). Circulating bile acids in these patients were capable to induce immunosuppression, as indicated by a significant increase in TGR5 activation by circulating bile acids (20.4% in severe liver failure vs. 2.8% in healthy controls, p = 0.0139). CONCLUSIONS: Circulating bile acids capable of inducing immunosuppression are present in septic shock patients with severe liver failure. Future studies should examine whether modulation of bile acid metabolism can improve the clinical course and outcome of sepsis in these patients.


Assuntos
Endotoxemia , Falência Hepática , Sepse , Choque Séptico , Humanos , Choque Séptico/metabolismo , Endotoxemia/complicações , Ácidos e Sais Biliares , Lipopolissacarídeos , Escherichia coli , Estado Terminal
6.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614272

RESUMO

Macrophages are important cells of the innate immune system that play many different roles in host defense, a fact that is reflected by their polarization into many distinct subtypes. Depending on their function and phenotype, macrophages can be grossly classified into classically activated macrophages (pro-inflammatory M1 cells), alternatively activated macrophages (anti-inflammatory M2 cells), and non-activated cells (resting M0 cells). A fast, label-free and non-destructive characterization of macrophage phenotypes could be of importance for studying the contribution of the various subtypes to numerous pathologies. In this work, single cell Raman spectroscopic imaging was applied to visualize the characteristic phenotype as well as to discriminate between different human macrophage phenotypes without any label and in a non-destructive manner. Macrophages were derived by differentiation of peripheral blood monocytes of human healthy donors and differently treated to yield M0, M1 and M2 phenotypes, as confirmed by marker analysis using flow cytometry and fluorescence imaging. Raman images of chemically fixed cells of those three macrophage phenotypes were processed using chemometric methods of unmixing (N-FINDR) and discrimination (PCA-LDA). The discrimination models were validated using leave-one donor-out cross-validation. The results show that Raman imaging is able to discriminate between pro- and anti-inflammatory macrophage phenotypes with high accuracy in a non-invasive, non-destructive and label-free manner. The spectral differences observed can be explained by the biochemical characteristics of the different phenotypes.


Assuntos
Macrófagos , Análise Espectral Raman , Humanos , Monócitos , Ativação de Macrófagos , Anti-Inflamatórios
7.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37569403

RESUMO

Sepsis is a life-threatening condition that results from an overwhelming and disproportionate host response to an infection. Currently, the quality and extent of the immune response are evaluated based on clinical symptoms and the concentration of inflammatory biomarkers released or expressed by the immune cells. However, the host response toward sepsis is heterogeneous, and the roles of the individual immune cell types have not been fully conceptualized. During sepsis, the spleen plays a vital role in pathogen clearance, such as bacteria by an antibody response, macrophage bactericidal capacity, and bacterial endotoxin detoxification. This study uses Raman spectroscopy to understand the splenic T-lymphocyte compartment profile changes during bona fide bacterial sepsis versus hyperinflammatory endotoxemia. The Raman spectral analysis showed marked changes in splenocytes of mice subjected to septic peritonitis principally in the DNA region, with minor changes in the amino acids and lipoprotein areas, indicating significant transcriptomic activity during sepsis. Furthermore, splenocytes from mice exposed to endotoxic shock by injection of a high dose of lipopolysaccharide showed significant changes in the protein and lipid profiles, albeit with interindividual variations in inflammation severity. In summary, this study provided experimental evidence for the applicability and informative value of Raman spectroscopy for profiling the immune response in a complex, systemic infection scenario. Importantly, changes within the acute phase of inflammation onset (24 h) were reliably detected, lending support to the concept of early treatment and severity control by extracorporeal Raman profiling of immunocyte signatures.


Assuntos
Endotoxemia , Sepse , Animais , Camundongos , Endotoxemia/metabolismo , Baço/metabolismo , Linfócitos T/metabolismo , Análise Espectral Raman , Sepse/metabolismo , Inflamação/metabolismo
8.
Sensors (Basel) ; 20(10)2020 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-32429535

RESUMO

This work focuses on the combination of two complementary non-destructive techniques to analyse the final deformation and internal damage induced in aramid composite plates subjected to ballistic impact. The first analysis device, a 3D scanner, allows digitalising the surface of the tested specimen. Comparing with the initial geometry, the permanent residual deformation (PBFD) can be obtained according to the impact characteristics. This is a significant parameter in armours and shielding design. The second inspection technique is based on computed tomography (CT). It allows analysing the internal state of the impacted sample, being able to detect possible delamination and fibre failure through the specimen thickness. The proposed methodology has been validated with two projectile geometries at different impact velocities, being the reaction force history on the specimen determined with piezoelectric sensors. Different loading states and induced damages were observed according to the projectile type and impact velocity. In order to validate the use of the 3D scanner, a correlation between impact velocity and damage induced in terms of permanent back face deformation has been realised for both projectiles studied. In addition, a comparison of the results obtained through this measurement method and those obtained in similar works, has been performed in the same range of impact energy. The results showed that CT is needed to analyse the internal damage of the aramid sample; however, this is a highly expensive and time-consuming method. The use of 3D scanner and piezoelectric sensors is perfectly complementary with CT and could be relevant to develop numerical models or design armours.


Assuntos
Autopsia , Balística Forense/métodos , Fenômenos Mecânicos , Tomografia Computadorizada por Raios X , Humanos
9.
J Immunol ; 198(12): 4781-4791, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28484052

RESUMO

Sepsis is characterized by a disproportionate host response to infection that often culminates in multiple organ failure. Current concepts invoke a deregulated immune reaction involving features of hyperinflammation, as well as protracted immune suppression. However, owing to the scarcity of human data, the precise origin of a long-term suppression of adaptive immunity remains doubtful. We report on an explorative clinical study of chronic critical illness (CCI) patients aimed at assessing the long-term consequences of sepsis on T cell function. Blood was drawn from 12 male CCI patients (median age 67 y, range 48-79 y) receiving continuous mechanical ventilation and renal replacement therapy in a long-term care hospital who had been treated in an external acute care hospital for severe sepsis. T cells were purified and subjected to flow cytometric immune-phenotyping and functional assays. We found that T cells from CCI patients featured higher basal levels of activation and stronger expression of the inhibitory surface receptor programmed cell death 1 compared with controls. However, T cells from CCI patients exhibited no suppressed TCR response at the level of proximal TCR signaling (activation/phosphorylation of PLCγ, Erk, Akt, LAT), activation marker upregulation (CD69, CD25, CD154, NUR77), IL-2 production, or clonal expansion. Rather, our data illustrate an augmented response in T cells from CCI patients in response to TCR/coreceptor (CD3/CD28) challenge. Thus, the present findings reveal that CCI sepsis patients feature signs of immune suppression but that their T cells exhibit a primed, rather than a suppressed, phenotype in their TCR response, arguing against a generalized T cell paralysis as a major cause of protracted immune suppression from sepsis.


Assuntos
Estado Terminal , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T/imunologia , Sepse/imunologia , Linfócitos T/imunologia , Idoso , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Feminino , Citometria de Fluxo , Humanos , Imunofenotipagem , Terapia de Imunossupressão , Assistência de Longa Duração , Masculino , Pessoa de Meia-Idade , Fosforilação , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Terapia de Substituição Renal , Respiração Artificial , Sepse/tratamento farmacológico , Transdução de Sinais , Linfócitos T/classificação , Linfócitos T/metabolismo
10.
Int J Mol Sci ; 18(6)2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28617331

RESUMO

Infectious diseases are a global health burden and remain associated with high social and economic impact. Treatment of affected patients largely relies on antimicrobial agents that act by directly targeting microbial replication. Despite the utility of host specific therapies having been assessed in previous clinical trials, such as targeting the immune response via modulating the cytokine release in sepsis, results have largely been frustrating and did not lead to the introduction of new therapeutic tools. In this article, we will discuss current evidence arguing that, by applying the concept of hormesis, already approved pharmacological agents could be used therapeutically to increase survival of patients with infectious disease via improving disease tolerance, a defense mechanism that decreases the extent of infection-associated tissue damage without directly targeting pathogenic microorganisms.


Assuntos
Anti-Infecciosos/uso terapêutico , Doenças Transmissíveis/tratamento farmacológico , Hormese , Inflamação/tratamento farmacológico , Sepse/tratamento farmacológico , Animais , Anti-Infecciosos/farmacologia , Autofagia/efeitos dos fármacos , Doenças Transmissíveis/complicações , Doenças Transmissíveis/genética , Dano ao DNA/efeitos dos fármacos , Humanos , Inflamação/complicações , Inflamação/genética , Sepse/complicações , Sepse/genética
11.
Cell Commun Signal ; 14: 5, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26861207

RESUMO

BACKGROUND: Growth factors induce a characteristically short-lived Ras activation in cells emerging from quiescence. Extensive work has shown that transient as opposed to sustained Ras activation is critical for the induction of mitogenic programs. Mitogen-induced accumulation of active Ras-GTP results from increased nucleotide exchange driven by the nucleotide exchange factor Sos. In contrast, the mechanism accounting for signal termination and prompt restoration of basal Ras-GTP levels is unclear, but has been inferred to involve feedback inhibition of Sos. Remarkably, how GTP-hydrolase activating proteins (GAPs) participate in controlling the rise and fall of Ras-GTP levels is unknown. RESULTS: Monitoring nucleotide exchange of Ras in permeabilized cells we find, unexpectedly, that the decline of growth factor-induced Ras-GTP levels proceeds in the presence of unabated high nucleotide exchange, pointing to GAP activation as a major mechanism of signal termination. Experiments with non-hydrolysable GTP analogues and mathematical modeling confirmed and rationalized the presence of high GAP activity as Ras-GTP levels decline in a background of high nucleotide exchange. Using pharmacological and genetic approaches we document a raised activity of the neurofibromatosis type I tumor suppressor Ras-GAP neurofibromin and an involvement of Rsk1 and Rsk2 in the down-regulation of Ras-GTP levels. CONCLUSIONS: Our findings show that, in addition to feedback inhibition of Sos, feedback stimulation of the RasGAP neurofibromin enforces termination of the Ras signal in the context of growth-factor signaling. These findings ascribe a precise role to neurofibromin in growth factor-dependent control of Ras activity and illustrate how, by engaging Ras-GAP activity, mitogen-challenged cells play safe to ensure a timely termination of the Ras signal irrespectively of the reigning rate of nucleotide exchange.


Assuntos
Ativação Enzimática , Fator de Crescimento Epidérmico/metabolismo , Neurofibromina 1/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo , Animais , Linhagem Celular , Guanosina Trifosfato/metabolismo , Células HEK293 , Células HeLa , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Fosforilação , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Proteína Son Of Sevenless de Drosófila/metabolismo
12.
Proc Natl Acad Sci U S A ; 110(51): 20587-92, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24297905

RESUMO

Receptor tyrosine kinases participate in several signaling pathways through small G proteins such as Ras (rat sarcoma). An important component in the activation of these G proteins is Son of sevenless (SOS), which catalyzes the nucleotide exchange on Ras. For optimal activity, a second Ras molecule acts as an allosteric activator by binding to a second Ras-binding site within SOS. This allosteric Ras-binding site is blocked by autoinhibitory domains of SOS. We have reported recently that Ras activation also requires the actin-binding proteins ezrin, radixin, and moesin. Here we report the mechanism by which ezrin modulates SOS activity and thereby Ras activation. Active ezrin enhances Ras/MAPK signaling and interacts with both SOS and Ras in vivo and in vitro. Moreover, in vitro kinetic assays with recombinant proteins show that ezrin also is important for the activity of SOS itself. Ezrin interacts with GDP-Ras and with the Dbl homology (DH)/pleckstrin homology (PH) domains of SOS, bringing GDP-Ras to the proximity of the allosteric site of SOS. These actions of ezrin are antagonized by the neurofibromatosis type 2 tumor-suppressor protein merlin. We propose an additional essential step in SOS/Ras control that is relevant for human cancer as well as all physiological processes involving Ras.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Guanosina Difosfato/metabolismo , Sistema de Sinalização das MAP Quinases , Neurofibromina 2/metabolismo , Proteína Oncogênica p21(ras)/metabolismo , Proteínas Son Of Sevenless/metabolismo , Animais , Proteínas do Citoesqueleto/genética , Guanosina Difosfato/genética , Humanos , Camundongos , Células NIH 3T3 , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Neurofibromina 2/genética , Proteína Oncogênica p21(ras)/genética , Proteínas Son Of Sevenless/genética
13.
J Cell Sci ; 126(Pt 20): 4746-55, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23943874

RESUMO

FMS-like tyrosine kinase 3 with internal tandem duplication (FLT3 ITD) is an important oncoprotein in acute myeloid leukemia (AML). Owing to its constitutive kinase activity FLT3 ITD partially accumulates at endomembranes, a feature shared with other disease-associated, mutated receptor tyrosine kinases. Because Ras proteins also transit through endomembranes we have investigated the possible existence of an intracellular FLT3-ITD/Ras signaling pathway by comparing Ras signaling of FLT3 ITD with that of wild-type FLT3. Ligand stimulation activated both K- and N-Ras in cells expressing wild-type FLT3. Live-cell Ras-GTP imaging revealed ligand-induced Ras activation at the plasma membrane (PM). FLT3-ITD-dependent constitutive activation of K-Ras and N-Ras was also observed primarily at the PM, supporting the view that the PM-resident pool of FLT3 ITD engaged the Ras/Erk pathway in AML cells. Accordingly, specific interference with FLT3-ITD/Ras signaling at the PM using PM-restricted dominant negative K-RasS17N potently inhibited cell proliferation and promoted apoptosis. In conclusion, Ras signaling is crucial for FLT3-ITD-dependent cell transformation and FLT3 ITD addresses PM-bound Ras despite its pronounced mislocalization to endomembranes.


Assuntos
Leucemia Mieloide Aguda/metabolismo , Tirosina Quinase 3 Semelhante a fms/metabolismo , Proteínas ras/metabolismo , Animais , Processos de Crescimento Celular/fisiologia , Membrana Celular/genética , Membrana Celular/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Genes ras , Humanos , Leucemia Mieloide Aguda/genética , Camundongos , Fosforilação , Transdução de Sinais , Sequências de Repetição em Tandem , Células Tumorais Cultivadas , Tirosina Quinase 3 Semelhante a fms/genética , Proteínas ras/genética
14.
Biol Chem ; 396(8): 831-48, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25781681

RESUMO

Ras is a prototypical small G-protein and a central regulator of growth, proliferation and differentiation processes in virtually every nucleated cell. As such, Ras becomes engaged and activated by multiple growth factors, mitogens, cytokines or adhesion receptors. Ras activation comes about by changes in the steady-state equilibrium between the inactive guanosine diphosphate (GDP)-bound and active guanosine triphosphate (GTP)-bound states of Ras, resulting in the mostly transient accumulation of Ras-GTP. Three decades of intense Ras research have disclosed various families of guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) as the two principal regulatory elements of the Ras-GDP/GTP loading status. However, with the possible exception of the GEF Sos, we still have only a rudimentary knowledge of the precise role played by many GEF and GAP members in the signalling network upstream of Ras. As for GAPs, we even lack the fundamental understanding of whether they function as genuine signal transducers in the context of growth factor-elicited Ras activation or rather act as passive modulators of the Ras-GDP/GTP cycle. Here we sift through the large body of Ras literature and review the relevant data for understanding the participation and precise role played by GEFs and GAPs in the process of Ras activation.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas ras/metabolismo , Animais , Fatores de Troca do Nucleotídeo Guanina/genética , Guanosina Trifosfato/metabolismo , Humanos , Ligação Proteica , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Proteínas ras/genética
15.
J Immunol ; 191(3): 1496-504, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23804711

RESUMO

Trafficking of malignant lymphocytes is fundamental to the biology of chronic lymphocytic leukemia (CLL). Transendothelial migration (TEM) of normal lymphocytes into lymph nodes requires the chemokine-induced activation of Rap1 and αLß2 integrin. However, in most cases of CLL, Rap1 is refractory to chemokine stimulation, resulting in failed αLß2 activation and TEM unless α4ß1 is coexpressed. In this study, we show that the inability of CXCL12 to induce Rap1 GTP loading in CLL cells results from failure of Rap1-containing endosomes to translocate to the plasma membrane. Furthermore, failure of chemokine-induced Rap1 translocation/GTP loading was associated with a specific pattern of cellular IgD distribution resembling that observed in normal B cells anergized by DNA-based Ags. Anergic features and chemokine unresponsiveness could be simultaneously reversed by culturing CLL cells ex vivo, suggesting that these two features are coupled and driven by stimuli present in the in vivo microenvironment. Finally, we show that failure of Rap1 translocation/GTP loading is linked to defective activation of phospholipase D1 and its upstream activator Arf1. Taken together, our findings indicate that chemokine unresponsiveness in CLL lymphocytes results from failure of Arf1/phospholipase D1-mediated translocation of Rap1 to the plasma membrane for GTP loading and may be a specific feature of anergy induced by DNA Ags.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Anergia Clonal/imunologia , Leucemia Linfocítica Crônica de Células B/imunologia , Fosfolipase D/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Linfócitos B/imunologia , Membrana Celular/metabolismo , Quimiocina CXCL12/metabolismo , Endossomos/metabolismo , Ativação Enzimática , Humanos , Imunoglobulina D/imunologia , Imunoglobulina D/metabolismo , Leucemia Linfocítica Crônica de Células B/metabolismo , Linfonodos/citologia , Linfonodos/imunologia , Antígeno-1 Associado à Função Linfocitária/metabolismo , Linfócitos/citologia , Linfócitos/imunologia , Linfócitos/metabolismo , Complexo Shelterina , Proteínas de Ligação a Telômeros/biossíntese , Migração Transendotelial e Transepitelial/imunologia , Células Tumorais Cultivadas , Proteínas rap de Ligação ao GTP/biossíntese
16.
Cell Commun Signal ; 12: 1, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-24383791

RESUMO

BACKGROUND: Ras is a membrane-associated small G-protein that funnels growth and differentiation signals into downstream signal transduction pathways by cycling between an inactive, GDP-bound and an active, GTP-bound state. Aberrant Ras activity as a result of oncogenic mutations causes de novo cell transformation and promotes tumor growth and progression. RESULTS: Here, we describe a novel strategy to block deregulated Ras activity by means of oligomerized cognate protein modules derived from the Ras-binding domain of c-Raf (RBD), which we named MSOR for multivalent scavengers of oncogenic Ras. The introduction of well-characterized mutations into RBD was used to adjust the affinity and hence the blocking potency of MSOR towards activated Ras. MSOR inhibited several oncogenic Ras-stimulated processes including downstream activation of Erk1/2, induction of matrix-degrading enzymes, cell motility and invasiveness in a graded fashion depending on the oligomerization grade and the nature of the individual RBD-modules. The amenability to accurate experimental regulation was further improved by engineering an inducible MSOR-expression system to render the reversal of oncogenic Ras effects controllable. CONCLUSION: MSOR represent a new tool for the experimental and possibly therapeutic selective blockade of oncogenic Ras signals.


Assuntos
Proteínas Proto-Oncogênicas c-raf/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo , Animais , Células COS , Chlorocebus aethiops , Camundongos , Células NIH 3T3 , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-raf/química , Proteínas Proto-Oncogênicas c-raf/genética , Proteínas ras/química
17.
Biochem J ; 454(2): 323-32, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23758196

RESUMO

Ras GTPases undergo post-translational modifications that govern their subcellular trafficking and localization. In particular, palmitoylation of the Golgi tags N-Ras and H-Ras for exocytotic transport and residency at the PM (plasma membrane). Following depalmitoylation, PM-Ras redistributes to all subcellular membranes causing an accumulation of palmitate-free Ras at endomembranes, including the Golgi and endoplasmic reticulum. Palmitoylation is unanimously regarded as a critical modification at the crossroads of Ras activity and trafficking control, but its precise relevance to native wild-type Ras function in growth factor signalling is unknown. We show in the present study by use of palmitoylation-deficient N-Ras mutants and via the analysis of palmitate content of agonist-activated GTP-loaded N-Ras that only palmitoylated N-Ras becomes activated by agonists. In line with an essential role of palmitoylation in Ras activation, dominant-negative RasS17N loses its blocking potency if rendered devoid of palmitoylation. Live-cell Ras-GTP imaging shows that N-Ras activation proceeds only at the PM, consistent with activated N-Ras-GTP being palmitoylated. Finally, palmitoylation-deficient N-Ras does not sustain EGF (epidermal growth factor) or serum-elicited mitogenic signalling, confirming that palmitoylation is essential for signal transduction by N-Ras. These findings document that N-Ras activation proceeds at the PM and suggest that depalmitoylation, by removing Ras from the PM, may contribute to the shutdown of Ras signalling.


Assuntos
Membrana Celular/metabolismo , Regulação para Baixo , Fator de Crescimento Epidérmico/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Membrana/metabolismo , Ácido Palmítico/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo , Substituição de Aminoácidos , Animais , Linhagem Celular , Células Cultivadas , Chlorocebus aethiops , Embrião de Mamíferos/citologia , Ativação Enzimática , GTP Fosfo-Hidrolases/genética , Humanos , Lipoilação , Proteínas de Membrana/agonistas , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas Mutantes/agonistas , Proteínas Mutantes/metabolismo , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteínas Recombinantes/agonistas , Proteínas Recombinantes/metabolismo , Proteínas ras/genética
18.
Polymers (Basel) ; 16(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38932102

RESUMO

Head impacts are a major concern in contact sports and sports with high-speed mobility due to the prevalence of head trauma events and their dire consequences. Surrogates of human heads are required in laboratory testing to safely explore the efficacy of impact-mitigating mechanisms. This work proposes using polymer additive manufacturing technologies to obtain a substitute for the human skull to be filled with a silicone-based brain surrogate. This assembly was instrumentalized with an Inertial Measurement Unit. Its performance was compared to a standard Hybrid III head form in validation tests using commercial headgear. The tests involved impact velocities in a range centered around 5 m/s. The results show a reasonable homology between the head substitutes, with a disparity in the impact response within 20% between the proposed surrogate and the standard head form. The head surrogate herein developed can be easily adapted to other morphologies and will significantly decrease the cost of the laboratory testing of head protection equipment, all while ensuring the safety of the testing process.

19.
Int J Antimicrob Agents ; 63(4): 107086, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38218325

RESUMO

OBJECTIVES: This study examined the potential of a novel photoactivatable ciprofloxacin to act against bacterial infections and microbiomes related to biliary diseases. It also evaluated treatment by combining the impact of bile acids and antibiotics on biofilms. Innovative strategies were evaluated to address the elusive bile duct microbiome resulting in biofilm-related infections linked to biliary catheters. The healthy biliary system is considered sterile, but bile microbiomes can occur in disease, and these correlate with hepatobiliary diseases. Causes include biofilms that form on internal-external biliary drainage catheters. These biliary catheters were used to noninvasively study the otherwise elusive bile microbiome for a pilot study. METHODS: A new photoactivatable antibiotic was tested for efficacy against human-derived pathogenic bacterial isolates - Salmonella enterica and Escherichia coli - and catheter-derived bile duct microbiomes. In addition, the effect of bile acids on the antibiotic treatment of biofilms was quantified using crystal violet staining, confocal laser scanning microscopy, and biofilm image analysis. Two novel approaches for targeting biliary biofilms were tested. RESULTS: A photoactivated antibiotic based on ciprofloxacin showed efficacy in preventing biofilm formation and reducing bacterial viability without harming eukaryotic cells. Furthermore, combination treatment of antibiotics with bile acids, such as ursodesoxycholic acid, mildly influenced biofilm biomass but reduced bacterial survival within biofilms. CONCLUSION: Bile acids, in addition to their endocrine and paracrine functions, may enhance antibiotic killing of bacterial biofilms compared with antibiotics alone. These approaches hold promise for treating biliary infections such as cholangitis.


Assuntos
Ácidos e Sais Biliares , Ciprofloxacina , Humanos , Ciprofloxacina/farmacologia , Ácidos e Sais Biliares/farmacologia , Projetos Piloto , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Ductos Biliares , Catéteres , Escherichia coli
20.
iScience ; 27(7): 110133, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38984201

RESUMO

Sepsis is a life-threatening condition caused by dysregulated host responses to infection. Myeloid cell accumulation and lymphocyte decline are widely recognized phenomena in septic patients. However, the fate of specific immune cells remains unclear. Here, we report the results of a human explorative study of patients with septic peritonitis and patients undergoing abdominal surgery without sepsis. We analyzed pairwise peritoneal fluid and peripheral blood taken 24 h after surgery to characterize immediate immune cell changes. Our results show that myeloid cell expansion and lymphocyte loss occur in all patients undergoing open abdominal surgery, indicating that these changes are not specific to sepsis. However, B1-like lymphocytes were specifically increased in the peritoneal fluid of septic patients, correlating positively with sequential organ failure assessment (SOFA) and acute physiology and chronic health evaluation II (APACHE-II) clinical severity scores. In support of this notion, we identified an accumulation of peritoneal B1b lymphocytes in septic mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA