Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Mol Genet Metab ; 143(1-2): 108542, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39053126

RESUMO

Gyrate atrophy of the choroid and retina (GACR) is caused by pathogenic biallelic variants in the gene encoding ornithine-δ-aminotransferase (OAT), and is characterized by progressive vision loss leading to blindness. OAT is a pyridoxal-5'-phosphate (PLP) dependent enzyme that is mainly involved in ornithine catabolism, and patients with a deficiency develop profound hyperornithinemia. Therapy is aimed at lowering ornithine levels through dietary arginine restriction and, in some cases, through enhancement of OAT activity via supraphysiological dosages of pyridoxine. In this study, we aimed to extend diagnostic practices in GACR by extensively characterizing the consequences of pathogenic variants on the enzymatic function of OAT, both at the level of the enzyme itself as well as the flux through the ornithine degradative pathway. In addition, we developed an in vitro pyridoxine responsiveness assay. We identified 14 different pathogenic variants, of which one variant was present in all patients of Dutch ancestry (p.(Gly353Asp)). In most patients the enzymatic activity of OAT as well as the rate of [14C]-ornithine flux was below the limit of quantification (LOQ). Apart from our positive control, only one patient cell line showed responsiveness to pyridoxine in vitro, which is in line with the reported in vivo pyridoxine responsiveness in this patient. None of the patients harboring the p.(Gly353Asp) substitution were responsive to pyridoxine in vivo or in vitro. In silico analysis and small-scale expression experiments showed that this variant causes a folding defect, leading to increased aggregation properties that could not be rescued by PLP. Using these results, we developed a diagnostic pipeline for new patients suspected of having GACR. Adding OAT enzymatic analyses and in vitro pyridoxine responsiveness to diagnostic practices will not only increase knowledge on the consequences of pathogenic variants in OAT, but will also enable expectation management for therapeutic modalities, thus eventually improving clinical care.

2.
Am J Med Genet A ; : e63900, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39360520

RESUMO

Mitochondrial trifunctional protein (MTP) deficiency is a fatty acid oxidation disorder associated with a spectrum of phenotypes. Patients with high residual enzyme activity tend to have milder phenotypes, and recently, fever-induced episodic myopathy was reported in association with a thermosensitive form of MTP deficiency. We report a 10-year-old male with recurrent episodes of acute flaccid paralysis involving upper and lower extremities in association with bulbar muscle weakness in the context of febrile illness, a phenotype reminiscent of recurrent periodic paralysis. The episodes started at the age of 3 years and have always been followed by full recovery within 1-2 weeks with no residual weakness. Whole exome sequencing revealed a homozygous c.2132C > T, p.(Pro711Leu) variant in HADHA. The variant leads to mildly reduced long-chain hydroxyacyl-CoA dehydrogenase (LCHAD) and long-chain ketoacyl-CoA thiolase (LCKAT) enzyme activities and reduced MTP protein expression in patient's fibroblasts when cultured at 37°C. Enzyme activities and MTP protein expression diminished when fibroblasts were cultured at 40°C. This is the first published report of confirmed recurrent periodic paralysis as a manifestation of a thermosensitive form of MTP deficiency, and it calls for this condition to be considered when evaluating patients with recurrent periodic paralysis given therapeutic implications.

3.
J Inherit Metab Dis ; 47(2): 280-288, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38200664

RESUMO

Glyoxylate is a key metabolite generated from various precursor substrates in different subcellular compartments including mitochondria, peroxisomes, and the cytosol. The fact that glyoxylate is a good substrate for the ubiquitously expressed enzyme lactate dehydrogenase (LDH) requires the presence of efficient glyoxylate detoxification systems to avoid the formation of oxalate. Furthermore, this detoxification needs to be compartment-specific since LDH is actively present in multiple subcellular compartments including peroxisomes, mitochondria, and the cytosol. Whereas the identity of these protection systems has been established for both peroxisomes and the cytosol as concluded from the deficiency of alanine glyoxylate aminotransferase (AGT) in primary hyperoxaluria type 1 (PH1) and glyoxylate reductase (GR) in PH2, the glyoxylate protection system in mitochondria has remained less well defined. In this manuscript, we show that the enzyme glyoxylate reductase has a bimodal distribution in human embryonic kidney (HEK293), hepatocellular carcinoma (HepG2), and cervical carcinoma (HeLa) cells and more importantly, in human liver, and is actively present in both the mitochondrial and cytosolic compartments. We conclude that the metabolism of glyoxylate in humans requires the complicated interaction between different subcellular compartments within the cell and discuss the implications for the different primary hyperoxalurias.


Assuntos
Oxirredutases do Álcool , Mitocôndrias Hepáticas , Transaminases , Humanos , Mitocôndrias Hepáticas/metabolismo , Células HEK293 , Oxalatos/metabolismo , Fígado/metabolismo , Glioxilatos/metabolismo
4.
Am J Hum Genet ; 105(3): 534-548, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31422819

RESUMO

Early-infantile encephalopathies with epilepsy are devastating conditions mandating an accurate diagnosis to guide proper management. Whole-exome sequencing was used to investigate the disease etiology in four children from independent families with intellectual disability and epilepsy, revealing bi-allelic GOT2 mutations. In-depth metabolic studies in individual 1 showed low plasma serine, hypercitrullinemia, hyperlactatemia, and hyperammonemia. The epilepsy was serine and pyridoxine responsive. Functional consequences of observed mutations were tested by measuring enzyme activity and by cell and animal models. Zebrafish and mouse models were used to validate brain developmental and functional defects and to test therapeutic strategies. GOT2 encodes the mitochondrial glutamate oxaloacetate transaminase. GOT2 enzyme activity was deficient in fibroblasts with bi-allelic mutations. GOT2, a member of the malate-aspartate shuttle, plays an essential role in the intracellular NAD(H) redox balance. De novo serine biosynthesis was impaired in fibroblasts with GOT2 mutations and GOT2-knockout HEK293 cells. Correcting the highly oxidized cytosolic NAD-redox state by pyruvate supplementation restored serine biosynthesis in GOT2-deficient cells. Knockdown of got2a in zebrafish resulted in a brain developmental defect associated with seizure-like electroencephalography spikes, which could be rescued by supplying pyridoxine in embryo water. Both pyridoxine and serine synergistically rescued embryonic developmental defects in zebrafish got2a morphants. The two treated individuals reacted favorably to their treatment. Our data provide a mechanistic basis for the biochemical abnormalities in GOT2 deficiency that may also hold for other MAS defects.


Assuntos
Alelos , Ácido Aspártico/metabolismo , Encefalopatias/genética , Proteínas de Ligação a Ácido Graxo/genética , Malatos/metabolismo , Mutação , Animais , Criança , Pré-Escolar , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Masculino , Camundongos , Sequenciamento do Exoma
5.
J Inherit Metab Dis ; 45(4): 819-831, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35403730

RESUMO

Mitochondrial trifunctional protein (MTP) is involved in long-chain fatty acid ß-oxidation (lcFAO). Deficiency of one or more of the enzyme activities as catalyzed by MTP causes generalized MTP deficiency (MTPD), long-chain hydroxyacyl-CoA dehydrogenase deficiency (LCHADD), or long-chain ketoacyl-CoA thiolase deficiency (LCKATD). When genetic variants result in thermo-sensitive enzymes, increased body temperature (e.g. fever) can reduce enzyme activity and be a risk factor for clinical decompensation. This is the first description of five patients with a thermo-sensitive MTP deficiency. Clinical and genetic information was obtained from clinical files. Measurement of LCHAD and LCKAT activities, lcFAO-flux studies and palmitate loading tests were performed in skin fibroblasts cultured at 37°C and 40°C. In all patients (four MTPD, one LCKATD), disease manifested during childhood (manifestation age: 2-10 years) with myopathic symptoms triggered by fever or exercise. In four patients, signs of retinopathy or neuropathy were present. Plasma long-chain acylcarnitines were normal or slightly increased. HADHB variants were identified (at age: 6-18 years) by whole exome sequencing or gene panel analyses. At 37°C, LCHAD and LCKAT activities were mildly impaired and lcFAO-fluxes were normal. Remarkably, enzyme activities and lcFAO-fluxes were markedly diminished at 40°C. Preventive (dietary) measures improved symptoms for most. In conclusion, all patients with thermo-sensitive MTP deficiency had a long diagnostic trajectory and both genetic and enzymatic testing were required for diagnosis. The frequent absence of characteristic acylcarnitine abnormalities poses a risk for a diagnostic delay. Given the positive treatment effects, upfront genetic screening may be beneficial to enhance early recognition.


Assuntos
Erros Inatos do Metabolismo Lipídico , Miopatias Mitocondriais , Doenças Musculares , 3-Hidroxiacil-CoA Desidrogenases , Adolescente , Cardiomiopatias , Criança , Pré-Escolar , Coenzima A , Diagnóstico Tardio , Ácidos Graxos/metabolismo , Humanos , Erros Inatos do Metabolismo Lipídico/diagnóstico , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/metabolismo , Miopatias Mitocondriais/diagnóstico , Miopatias Mitocondriais/genética , Proteína Mitocondrial Trifuncional/deficiência , Doenças Musculares/diagnóstico , Doenças Musculares/genética , Doenças do Sistema Nervoso , Rabdomiólise
6.
J Inherit Metab Dis ; 45(3): 445-455, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35174513

RESUMO

A deficiency of 3-hydroxyisobutyric acid dehydrogenase (HIBADH) has been recently identified as a cause of primary 3-hydroxyisobutyric aciduria in two siblings; the only previously recognized primary cause had been a deficiency of methylmalonic semialdehyde dehydrogenase, the enzyme that is immediately downstream of HIBADH in the valine catabolic pathway and is encoded by the ALDH6A1 gene. Here we report on three additional patients from two unrelated families who present with marked and persistent elevations of urine L-3-hydroxyisobutyric acid (L-3HIBA) and a range of clinical findings. Molecular genetic analyses revealed novel, homozygous variants in the HIBADH gene that are private within each family. Evidence for pathogenicity of the identified variants is presented, including enzymatic deficiency of HIBADH in patient fibroblasts. This report describes new variants in HIBADH as an underlying cause of primary 3-hydroxyisobutyric aciduria and expands the clinical spectrum of this recently identified inborn error of valine metabolism. Additionally, we describe a quantitative method for the measurement of D- and L-3HIBA in plasma and urine and present the results of a valine restriction therapy in one of the patients.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Espectrometria de Massas em Tandem , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Cromatografia Líquida , Humanos , Hidroxibutiratos/urina , Oxirredutases , Valina
7.
Genet Med ; 23(4): 740-750, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33239752

RESUMO

PURPOSE: In this study we investigate the disease etiology in 12 patients with de novo variants in FAR1 all resulting in an amino acid change at position 480 (p.Arg480Cys/His/Leu). METHODS: Following next-generation sequencing and clinical phenotyping, functional characterization was performed in patients' fibroblasts using FAR1 enzyme analysis, FAR1 immunoblotting/immunofluorescence, and lipidomics. RESULTS: All patients had spastic paraparesis and bilateral congenital/juvenile cataracts, in most combined with speech and gross motor developmental delay and truncal hypotonia. FAR1 deficiency caused by biallelic variants results in defective ether lipid synthesis and plasmalogen deficiency. In contrast, patients' fibroblasts with the de novo FAR1 variants showed elevated plasmalogen levels. Further functional studies in fibroblasts showed that these variants cause a disruption of the plasmalogen-dependent feedback regulation of FAR1 protein levels leading to uncontrolled ether lipid production. CONCLUSION: Heterozygous de novo variants affecting the Arg480 residue of FAR1 lead to an autosomal dominant disorder with a different disease mechanism than that of recessive FAR1 deficiency and a diametrically opposed biochemical phenotype. Our findings show that for patients with spastic paraparesis and bilateral cataracts, FAR1 should be considered as a candidate gene and added to gene panels for hereditary spastic paraplegia, cerebral palsy, and juvenile cataracts.


Assuntos
Aldeído Oxirredutases/genética , Éteres , Lipídeos , Paraplegia Espástica Hereditária/genética , Humanos , Fenótipo
8.
Mol Genet Metab ; 129(3): 171-176, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31954591

RESUMO

BACKGROUND: The high variability in clinical outcome of patients with Classical Galactosemia (CG) is poorly understood and underlines the importance of prognostic biomarkers, which are currently lacking. The aim of this study was to investigate if residual galactose metabolism capacity is associated with clinical and biochemical outcomes in CG patients with varying geno- and phenotypes. METHODS: Galactose Metabolite Profiling (GMP) was used to determine residual galactose metabolism in fibroblasts of CG patients. The association between the galactose index (GI) defined as the ratio of the measured metabolites [U13C]Gal-1-P/ [13C6]UDP-galactose, and both intellectual and neurological outcome and galactose-1-phosphate (Gal-1-P) levels was investigated. RESULTS: GMP was performed in fibroblasts of 28 patients and 3 control subjects. The GI of the classical phenotype patients (n = 22) was significantly higher than the GI of four variant patients detected by newborn screening (NBS) (p = .002), two homozygous p.Ser135Leu patients (p = .022) and three controls (p = .006). In the classical phenotype patients, 13/18 (72%) had a poor intellectual outcome (IQ < 85) and 6/12 (50%) had a movement disorder. All the NBS detected variant patients (n = 4) had a normal intellectual outcome (IQ ≥ 85) and none of them has a movement disorder. In the classical phenotype patients, there was no significant difference in GI between patients with a poor and normal clinical outcome. The NBS detected variant patients had significantly lower GI levels and thus higher residual galactose metabolism than patients with classical phenotypes. There was a clear correlation between Gal-1-P levels in erythrocytes and the GI (p = .001). CONCLUSIONS: The GI was able to distinguish CG patients with varying geno- and phenotypes and correlated with Gal-1-P. The data of the NBS detected variant patients demonstrated that a higher residual galactose metabolism may result in a more favourable clinical outcome. Further research is needed to enable individual prognostication and treatment in all CG patients.


Assuntos
Fibroblastos/metabolismo , Galactose/metabolismo , Galactosemias/diagnóstico , Galactosemias/metabolismo , Estudos de Coortes , Feminino , Galactosemias/genética , Galactosemias/fisiopatologia , Galactosefosfatos/metabolismo , Genótipo , Homozigoto , Humanos , Recém-Nascido , Deficiência Intelectual/diagnóstico , Masculino , Transtornos dos Movimentos/diagnóstico , Triagem Neonatal , Fenótipo
9.
Brain ; 142(11): 3382-3397, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31637422

RESUMO

CTP:phosphoethanolamine cytidylyltransferase (ET), encoded by PCYT2, is the rate-limiting enzyme for phosphatidylethanolamine synthesis via the CDP-ethanolamine pathway. Phosphatidylethanolamine is one of the most abundant membrane lipids and is particularly enriched in the brain. We identified five individuals with biallelic PCYT2 variants clinically characterized by global developmental delay with regression, spastic para- or tetraparesis, epilepsy and progressive cerebral and cerebellar atrophy. Using patient fibroblasts we demonstrated that these variants are hypomorphic, result in altered but residual ET protein levels and concomitant reduced enzyme activity without affecting mRNA levels. The significantly better survival of hypomorphic CRISPR-Cas9 generated pcyt2 zebrafish knockout compared to a complete knockout, in conjunction with previously described data on the Pcyt2 mouse model, indicates that complete loss of ET function may be incompatible with life in vertebrates. Lipidomic analysis revealed profound lipid abnormalities in patient fibroblasts impacting both neutral etherlipid and etherphospholipid metabolism. Plasma lipidomics studies also identified changes in etherlipids that have the potential to be used as biomarkers for ET deficiency. In conclusion, our data establish PCYT2 as a disease gene for a new complex hereditary spastic paraplegia and confirm that etherlipid homeostasis is important for the development and function of the brain.


Assuntos
Fosfatidiletanolaminas/biossíntese , RNA Nucleotidiltransferases/genética , Paraplegia Espástica Hereditária/genética , Adolescente , Alelos , Animais , Atrofia , Encéfalo/patologia , Criança , Pré-Escolar , Deficiências do Desenvolvimento/genética , Epilepsia/genética , Feminino , Técnicas de Inativação de Genes , Variação Genética , Humanos , Lipidômica , Masculino , Camundongos , RNA Nucleotidiltransferases/deficiência , Adulto Jovem , Peixe-Zebra
10.
Hum Mutat ; 40(10): 1899-1904, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31187905

RESUMO

Primary carnitine deficiency is caused by a defect in the active cellular uptake of carnitine by Na+ -dependent organic cation transporter novel 2 (OCTN2). Genetic diagnostic yield for this metabolic disorder has been relatively low, suggesting that disease-causing variants are missed. We Sanger sequenced the 5' untranslated region (UTR) of SLC22A5 in individuals with possible primary carnitine deficiency in whom no or only one mutant allele had been found. We identified a novel 5'-UTR c.-149G>A variant which we characterized by expression studies with reporter constructs in HeLa cells and by carnitine-transport measurements in fibroblasts using a newly developed sensitive assay based on tandem mass spectrometry. This variant, which we identified in 57 of 236 individuals of our cohort, introduces a functional upstream out-of-frame translation initiation codon. We show that the codon suppresses translation from the wild-type ATG of SLC22A5, resulting in reduced OCTN2 protein levels and concomitantly lower transport activity. With an allele frequency of 24.2% the c.-149G>A variant is the most frequent cause of primary carnitine deficiency in our cohort and may explain other reported cases with an incomplete genetic diagnosis. Individuals carrying this variant should be clinically re-evaluated and monitored to determine if this variant has clinical consequences.


Assuntos
Regiões 5' não Traduzidas , Cardiomiopatias/genética , Carnitina/deficiência , Códon de Iniciação , Predisposição Genética para Doença , Hiperamonemia/genética , Doenças Musculares/genética , Mutação , Membro 5 da Família 22 de Carreadores de Soluto/genética , Alelos , Sequência de Aminoácidos , Sequência de Bases , Transporte Biológico , Cardiomiopatias/diagnóstico , Cardiomiopatias/metabolismo , Carnitina/genética , Carnitina/metabolismo , Linhagem Celular , Frequência do Gene , Genes Reporter , Estudos de Associação Genética , Humanos , Hiperamonemia/diagnóstico , Hiperamonemia/metabolismo , Doenças Musculares/diagnóstico , Doenças Musculares/metabolismo , Membro 5 da Família 22 de Carreadores de Soluto/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA