Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Eur J Nucl Med Mol Imaging ; 51(7): 1909-1922, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38366196

RESUMO

PURPOSE: We hypothesized that severe tau burden in brain regions involved in direct or indirect pathways of the basal ganglia correlate with more severe striatal dopamine deficiency in four-repeat (4R) tauopathies. Therefore, we correlated [18F]PI-2620 tau-positron-emission-tomography (PET) imaging with [123I]-Ioflupane single-photon-emission-computed tomography (SPECT) for dopamine transporter (DaT) availability. METHODS: Thirty-eight patients with clinically diagnosed 4R-tauopathies (21 male; 69.0 ± 8.5 years) and 15 patients with clinically diagnosed α-synucleinopathies (8 male; 66.1 ± 10.3 years) who underwent [18F]PI-2620 tau-PET and DaT-SPECT imaging with a time gap of 3 ± 5 months were evaluated. Regional Tau-PET signals and DaT availability as well as their principal components were correlated in patients with 4R-tauopathies and α-synucleinopathies. Both biomarkers and the residuals of their association were correlated with clinical severity scores in 4R-tauopathies. RESULTS: In patients with 4R-tauopathies, [18F]PI-2620 binding in basal ganglia and midbrain regions was negatively associated with striatal DaT availability (i.e. globus pallidus internus and putamen (ß = - 0.464, p = 0.006, Durbin-Watson statistics = 1.824) in a multiple regression model. Contrarily, [18F]PI-2620 binding in the dentate nucleus showed no significant regression factor with DaT availability in the striatum (ß = 0.078, p = 0.662, Durbin-Watson statistics = 1.686). Patients with α-synucleinopathies did not indicate any regional associations between [18F]PI-2620-binding and DaT availability. Higher DaT-SPECT binding relative to tau burden was associated with better clinical performance (ß = - 0.522, p = 0.011, Durbin-Watson statistics = 2.663) in patients with 4R-tauopathies. CONCLUSION: Tau burden in brain regions involved in dopaminergic pathways is associated with aggravated dopaminergic dysfunction in patients with clinically diagnosed primary tauopathies. The ability to sustain dopamine transmission despite tau accumulation may preserve motor function.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Dopamina , Tomografia por Emissão de Pósitrons , Tauopatias , Proteínas tau , Humanos , Masculino , Feminino , Idoso , Tauopatias/diagnóstico por imagem , Tauopatias/metabolismo , Dopamina/metabolismo , Proteínas tau/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Tomografia Computadorizada de Emissão de Fóton Único , Pessoa de Meia-Idade , Nortropanos/farmacocinética
2.
Eur J Nucl Med Mol Imaging ; 50(2): 423-434, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36102964

RESUMO

PURPOSE: Early after [18F]PI-2620 PET tracer administration, perfusion imaging has potential for regional assessment of neuronal injury in neurodegenerative diseases. This is while standard late-phase [18F]PI-2620 tau-PET is able to discriminate the 4-repeat tauopathies progressive supranuclear palsy and corticobasal syndrome (4RTs) from disease controls and healthy controls. Here, we investigated whether early-phase [18F]PI-2620 PET has an additive value for biomarker based evaluation of 4RTs. METHODS: Seventy-eight patients with 4RTs (71 ± 7 years, 39 female), 79 patients with other neurodegenerative diseases (67 ± 12 years, 35 female) and twelve age-matched controls (69 ± 8 years, 8 female) underwent dynamic (0-60 min) [18F]PI-2620 PET imaging. Regional perfusion (0.5-2.5 min p.i.) and tau load (20-40 min p.i.) were measured in 246 predefined brain regions [standardized-uptake-value ratios (SUVr), cerebellar reference]. Regional SUVr were compared between 4RTs and controls by an ANOVA including false-discovery-rate (FDR, p < 0.01) correction. Hypoperfusion in resulting 4RT target regions was evaluated at the patient level in all patients (mean value - 2SD threshold). Additionally, perfusion and tau pattern expression levels were explored regarding their potential discriminatory value of 4RTs against other neurodegenerative disorders, including validation in an independent external dataset (n = 37), and correlated with clinical severity in 4RTs (PSP rating scale, MoCA, activities of daily living). RESULTS: Patients with 4RTs had significant hypoperfusion in 21/246 brain regions, most dominant in thalamus, caudate nucleus, and anterior cingulate cortex, fitting to the topology of the 4RT disease spectrum. However, single region hypoperfusion was not specific regarding the discrimination of patients with 4RTs against patients with other neurodegenerative diseases. In contrast, perfusion pattern expression showed promise for discrimination of patients with 4RTs from other neurodegenerative diseases (AUC: 0.850). Discrimination by the combined perfusion-tau pattern expression (AUC: 0.903) exceeded that of the sole tau pattern expression (AUC: 0.864) and the discriminatory power of the combined perfusion-tau pattern expression was replicated in the external dataset (AUC: 0.917). Perfusion but not tau pattern expression was associated with PSP rating scale (R = 0.402; p = 0.0012) and activities of daily living (R = - 0.431; p = 0.0005). CONCLUSION: [18F]PI-2620 perfusion imaging mirrors known topology of regional hypoperfusion in 4RTs. Single region hypoperfusion is not specific for 4RTs, but perfusion pattern expression may provide an additive value for the discrimination of 4RTs from other neurodegenerative diseases and correlates closer with clinical severity than tau pattern expression.


Assuntos
Doença de Alzheimer , Degeneração Corticobasal , Paralisia Supranuclear Progressiva , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Atividades Cotidianas , Doença de Alzheimer/complicações , Degeneração Corticobasal/diagnóstico por imagem , Doenças Neurodegenerativas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Paralisia Supranuclear Progressiva/diagnóstico por imagem
3.
Mov Disord ; 38(10): 1901-1913, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37655363

RESUMO

BACKGROUND: To date, studies on positron emission tomography (PET) with 18 F-fluorodeoxyglucose (FDG) in progressive supranuclear palsy (PSP) usually included PSP cohorts overrepresenting patients with Richardson's syndrome (PSP-RS). OBJECTIVES: To evaluate FDG-PET in a patient sample representing the broad phenotypic PSP spectrum typically encountered in routine clinical practice. METHODS: This retrospective, multicenter study included 41 PSP patients, 21 (51%) with RS and 20 (49%) with non-RS variants of PSP (vPSP), and 46 age-matched healthy controls. Two state-of-the art methods for the interpretation of FDG-PET were compared: visual analysis supported by voxel-based statistical testing (five readers) and automatic covariance pattern analysis using a predefined PSP-related pattern. RESULTS: Sensitivity and specificity of the majority visual read for the detection of PSP in the whole cohort were 74% and 72%, respectively. The percentage of false-negative cases was 10% in the PSP-RS subsample and 43% in the vPSP subsample. Automatic covariance pattern analysis provided sensitivity and specificity of 93% and 83% in the whole cohort. The percentage of false-negative cases was 0% in the PSP-RS subsample and 15% in the vPSP subsample. CONCLUSIONS: Visual interpretation of FDG-PET supported by voxel-based testing provides good accuracy for the detection of PSP-RS, but only fair sensitivity for vPSP. Automatic covariance pattern analysis outperforms visual interpretation in the detection of PSP-RS, provides clinically useful sensitivity for vPSP, and reduces the rate of false-positive findings. Thus, pattern expression analysis is clinically useful to complement visual reading and voxel-based testing of FDG-PET in suspected PSP. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Transtornos dos Movimentos , Paralisia Supranuclear Progressiva , Humanos , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons/métodos , Estudos Retrospectivos , Paralisia Supranuclear Progressiva/diagnóstico
4.
Cerebellum ; 22(5): 925-937, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36085397

RESUMO

Essential tremor (ET) is a progressive movement disorder whose pathophysiology is not fully understood. Current evidence supports the view that the cerebellum is critically involved in the genesis of the tremor in ET. However, it is still unknown whether cerebellar dysfunction affects not only the control of current movements but also the prediction of future movements through dynamic adaptation toward a changed environment. Here, we tested the capacity of 28 patients with ET to adapt in a visuomotor adaptation task known to depend on intact cerebellar function. We found specific impairments in that task compared to age-matched healthy controls. Adaptation to the visual perturbation was disrupted in ET patients, while de-adaptation, the phase after abrupt removal of the perturbation, developed similarly to control subjects. Baseline tremor-independent motor performance was as well similar to healthy controls, indicating that adaptation deficits in ET patients were not rooted in an inability to perform goal-directed movements. There was no association between clinical severity scores of ET and early visuomotor adaptation abilities. These results provide further evidence that the cerebellum is dysfunctional in ET.


Assuntos
Tremor Essencial , Humanos , Desempenho Psicomotor/fisiologia , Tremor , Cerebelo/fisiologia , Movimento/fisiologia , Adaptação Fisiológica/fisiologia
5.
J Neurophysiol ; 127(6): 1606-1621, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35544757

RESUMO

Bradykinesia is a cardinal motor symptom in Parkinson's disease (PD), the pathophysiology of which is not fully understood. We analyzed the role of cross-frequency coupling of oscillatory cortical activity in motor impairment in patients with PD and healthy controls. High-density EEG signals were recorded during various motor activities and at rest. Patients performed a repetitive finger-pressing task normally, but were slower than controls during tapping. Phase-amplitude coupling (PAC) between ß (13-30 Hz) and broadband γ (50-150 Hz) was computed from individual EEG source signals in the premotor, primary motor, and primary somatosensory cortices, and the primary somatosensory complex. In all four regions, averaging the entire movement period resulted in higher PAC in patients than in controls for the resting condition and the pressing task (similar performance between groups). However, this was not the case for the tapping tasks where patients performed slower. This suggests the strength of state-related ß-γ PAC does not determine Parkinsonian bradykinesia. Examination of the dynamics of oscillatory EEG signals during motor transitions revealed a distinctive motif of PAC rise and decay around press onset. This pattern was also present at press offset and slow tapping onset, linking such idiosyncratic PAC changes to transitions between different movement states. The transition-related PAC modulation in patients was similar to controls in the pressing task but flattened during slow tapping, which related to normal and abnormal performance, respectively. These findings suggest that the dysfunctional evolution of neuronal population dynamics during movement execution is an important component of the pathophysiology of Parkinsonian bradykinesia.NEW & NOTEWORTHY Our findings using noninvasive EEG recordings provide evidence that PAC dynamics might play a role in the physiological cortical control of movement execution and may encode transitions between movement states. Results in patients with Parkinson's disease suggest that bradykinesia is related to a deficit of the dynamic regulation of PAC during movement execution rather than its absolute strength. Our findings may contribute to the development of a new concept of the pathophysiology of bradykinesia.


Assuntos
Doença de Parkinson , Dedos , Humanos , Hipocinesia/etiologia , Movimento/fisiologia
6.
Brain ; 144(2): 487-503, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33257940

RESUMO

Abnormal phase-amplitude coupling between ß and broadband-γ activities has been identified in recordings from the cortex or scalp of patients with Parkinson's disease. While enhanced phase-amplitude coupling has been proposed as a biomarker of Parkinson's disease, the neuronal mechanisms underlying the abnormal coupling and its relationship to motor impairments in Parkinson's disease remain unclear. To address these issues, we performed an in-depth analysis of high-density EEG recordings at rest in 19 patients with Parkinson's disease and 20 age- and sex-matched healthy control subjects. EEG signals were projected onto the individual cortical surfaces using source reconstruction techniques and separated into spatiotemporal components using independent component analysis. Compared to healthy controls, phase-amplitude coupling of Parkinson's disease patients was enhanced in dorsolateral prefrontal cortex, premotor cortex, primary motor cortex and somatosensory cortex, the difference being statistically significant in the hemisphere contralateral to the clinically more affected side. ß and γ signals involved in generating abnormal phase-amplitude coupling were not strictly phase-phase coupled, ruling out that phase-amplitude coupling merely reflects the abnormal activity of a single oscillator in a recurrent network. We found important differences for couplings between the ß and γ signals from identical components as opposed to those from different components (originating from distinct spatial locations). While both couplings were abnormally enhanced in patients, only the latter were correlated with clinical motor severity as indexed by part III of the Movement Disorder Society Unified Parkinson's Disease Rating Scale. Correlations with parkinsonian motor symptoms of such inter-component couplings were found in premotor, primary motor and somatosensory cortex, but not in dorsolateral prefrontal cortex, suggesting motor domain specificity. The topography of phase-amplitude coupling demonstrated profound differences in patients compared to controls. These findings suggest, first, that enhanced phase-amplitude coupling in Parkinson's disease patients originates from the coupling between distinct neural networks in several brain regions involved in motor control. Because these regions included the somatosensory cortex, abnormal phase-amplitude coupling is not exclusively tied to the hyperdirect tract connecting cortical regions monosynaptically with the subthalamic nucleus. Second, only the coupling between ß and γ signals from different components appears to have pathophysiological significance, suggesting that therapeutic approaches breaking the abnormal lateral coupling between neuronal circuits may be more promising than targeting phase-amplitude coupling per se.


Assuntos
Ritmo beta , Córtex Cerebral/fisiopatologia , Ritmo Gama , Doença de Parkinson/fisiopatologia , Adulto , Idoso , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiopatologia , Couro Cabeludo , Processamento de Sinais Assistido por Computador
7.
Eur J Nucl Med Mol Imaging ; 48(12): 3872-3885, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34021393

RESUMO

PURPOSE: Dynamic 60-min positron emission tomography (PET) imaging with the novel tau radiotracer [18F]PI-2620 facilitated accurate discrimination between patients with progressive supranuclear palsy (PSP) and healthy controls (HCs). This study investigated if truncated acquisition and static time windows can be used for [18F]PI-2620 tau-PET imaging of PSP. METHODS: Thirty-seven patients with PSP Richardson syndrome (PSP-RS) were evaluated together with ten HCs. [18F]PI-2620 PET was performed by a dynamic 60-min scan. Distribution volume ratios (DVRs) were calculated using full and truncated scan durations (0-60, 0-50, 0-40, 0-30, and 0-20 min p.i.). Standardized uptake value ratios (SUVrs) were obtained 20-40, 30-50, and 40-60 min p.i.. All DVR and SUVr data were compared with regard to their potential to discriminate patients with PSP-RS from HCs in predefined subcortical and cortical target regions (effect size, area under the curve (AUC), multi-region classifier). RESULTS: 0-50 and 0-40 DVR showed equivalent effect sizes as 0-60 DVR (averaged Cohen's d: 1.22 and 1.16 vs. 1.26), whereas the performance dropped for 0-30 or 0-20 DVR. The 20-40 SUVr indicated the best performance of all static acquisition windows (averaged Cohen's d: 0.99). The globus pallidus internus discriminated patients with PSP-RS and HCs at a similarly high level for 0-60 DVR (AUC: 0.96), 0-40 DVR (AUC: 0.96), and 20-40 SUVr (AUC: 0.94). The multi-region classifier sensitivity of these time windows was consistently 86%. CONCLUSION: Truncated and static imaging windows can be used for [18F]PI-2620 PET imaging of PSP. 0-40 min dynamic scanning offers the best balance between accuracy and economic scanning.


Assuntos
Doença de Alzheimer , Paralisia Supranuclear Progressiva , Estudos de Viabilidade , Humanos , Tomografia por Emissão de Pósitrons , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Proteínas tau
8.
Cereb Cortex ; 30(3): 1030-1039, 2020 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-31373620

RESUMO

The acquisition of novel motor skills is a fundamental process of lifelong learning and crucial for everyday behavior. Performance gains acquired by training undergo a transition from an initially labile state to a state that is progressively robust towards interference, a phenomenon referred to as motor consolidation. Previous work has demonstrated that the primary motor cortex (M1) is a neural key region for motor consolidation. However, it remains unknown whether physiological processes underlying posttraining motor consolidation in M1 are active already during an ongoing training phase or only after completion of the training. We examined whether 10-Hz interleaved repetitive transcranial magnetic stimulation (i-rTMS) of M1 during rest periods between active motor training in an explicit motor learning task affects posttraining offline consolidation. Relative to i-rTMS to the vertex (control region), i-rTMS to the M1hand area of the nondominant hand facilitated posttraining consolidation assessed 6 h after training without affecting training performance. This facilitatory effect generalized to delayed performance of the mirror-symmetric sequence with the untrained (dominant) hand. These findings indicate that posttraining consolidation can be facilitated independently from training-induced performance increments and suggest that consolidation is initiated already during offline processing in short rest periods between active training phases.


Assuntos
Consolidação da Memória/fisiologia , Córtex Motor/fisiologia , Destreza Motora , Prática Psicológica , Adulto , Feminino , Humanos , Masculino , Desempenho Psicomotor , Estimulação Magnética Transcraniana , Adulto Jovem
9.
Neural Plast ; 2021: 6696341, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33790962

RESUMO

Compared to relapsing-remitting multiple sclerosis (MS), progressive MS is characterized by a lack of spontaneous recovery and a poor response to pharmaceutical immunomodulatory treatment. These patients may, therefore, particularly benefit from interventions that augment training-induced plasticity of the central nervous system. In this cross-sectional double-blind cross-over pilot study, effects of transcranial direct current stimulation (tDCS) on motor sequence learning were examined across four sessions on days 1, 3, 5, and 8 in 16 patients with progressive MS. Active or sham anodal tDCS of the primary motor cortex was applied immediately after each training session. Participants took part in two experiments separated by at least four weeks, which differed with respect to the type of posttraining tDCS (active or sham). While task performance across blocks of training and across sessions improved significantly in both the active and sham tDCS experiment, neither online nor offline motor learning was modulated by the type of tDCS. Accordingly, the primary endpoint (task performance on day 8) did not differ between stimulation conditions. In sum, patients with progressive MS are able to improve performance in an ecologically valid motor sequence learning task through training. However, even multisession posttraining tDCS fails to promote motor learning in progressive MS.


Assuntos
Aprendizagem/fisiologia , Consolidação da Memória/fisiologia , Destreza Motora/fisiologia , Esclerose Múltipla Crônica Progressiva/terapia , Desempenho Psicomotor/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Estudos Cross-Over , Estudos Transversais , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Crônica Progressiva/fisiopatologia , Esclerose Múltipla Crônica Progressiva/psicologia , Projetos Piloto
10.
Neuroimage ; 223: 117323, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32882377

RESUMO

Previous research has consistently demonstrated that older adults have difficulties transforming recently learned movements into robust, long-lasting memories (i.e., motor memory consolidation). One potential avenue to enhance consolidation in older individuals is the administration of transcranial direct current stimulation (tDCS) to task-relevant brain regions after initial learning. Although this approach has shown promise, the underlying cerebral correlates have yet to be revealed. Moreover, it is unknown whether the effects of tDCS are lateralized, an open question with implications for rehabilitative approaches following predominantly unilateral neurological injuries. In this research, healthy older adults completed a sequential motor task before and 6 h after receiving anodal or sham stimulation to right or left primary motor cortex (M1) while functional magnetic resonance images were acquired. Unexpectedly, anodal stimulation to right M1 following left-hand sequence learning significantly hindered consolidation as compared to a sham control, whereas no differences were observed with left M1 stimulation following right-hand learning. Impaired performance following right M1 stimulation was paralleled by sustained engagement of regions known to be critical for early learning stages, including the caudate nucleus and the premotor and parietal cortices. Thus, post-learning tDCS in older adults not only exerts heterogenous effects across the two hemispheres but can also disrupt ongoing memory processing.


Assuntos
Lateralidade Funcional , Aprendizagem/fisiologia , Consolidação da Memória/fisiologia , Córtex Motor/fisiologia , Desempenho Psicomotor/fisiologia , Estimulação Transcraniana por Corrente Contínua , Idoso , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Movimento
11.
Hum Brain Mapp ; 41(13): 3680-3695, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32583940

RESUMO

Previous research in young adults has demonstrated that both motor learning and transcranial direct current stimulation (tDCS) trigger decreases in the levels of gamma-aminobutyric acid (GABA) in the sensorimotor cortex, and these decreases are linked to greater learning. Less is known about the role of GABA in motor learning in healthy older adults, a knowledge gap that is surprising given the established aging-related reductions in sensorimotor GABA. Here, we examined the effects of motor learning and subsequent tDCS on sensorimotor GABA levels and resting-state functional connectivity in the brains of healthy older participants. Thirty-six older men and women completed a motor sequence learning task before receiving anodal or sham tDCS to the sensorimotor cortex. GABA-edited magnetic resonance spectroscopy of the sensorimotor cortex and resting-state (RS) functional magnetic resonance imaging data were acquired before and after learning/stimulation. At the group level, neither learning nor anodal tDCS significantly modulated GABA levels or RS connectivity among task-relevant regions. However, changes in GABA levels from the baseline to post-learning session were significantly related to motor learning magnitude, age, and baseline GABA. Moreover, the change in functional connectivity between task-relevant regions, including bilateral motor cortices, was correlated with baseline GABA levels. These data collectively indicate that motor learning-related decreases in sensorimotor GABA levels and increases in functional connectivity are limited to those older adults with higher baseline GABA levels and who learn the most. Post-learning tDCS exerted no influence on GABA levels, functional connectivity or the relationships among these variables in older adults.


Assuntos
Envelhecimento/fisiologia , Conectoma , Espectroscopia de Ressonância Magnética , Atividade Motora/fisiologia , Plasticidade Neuronal/fisiologia , Córtex Sensório-Motor/fisiologia , Aprendizagem Seriada/fisiologia , Estimulação Transcraniana por Corrente Contínua , Ácido gama-Aminobutírico/metabolismo , Idoso , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Córtex Motor/diagnóstico por imagem , Córtex Motor/fisiologia , Desempenho Psicomotor/fisiologia , Córtex Sensório-Motor/diagnóstico por imagem , Córtex Sensório-Motor/metabolismo
12.
Eur J Nucl Med Mol Imaging ; 47(12): 2911-2922, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32318783

RESUMO

PURPOSE: Second-generation tau radiotracers for use with positron emission tomography (PET) have been developed for visualization of tau deposits in vivo. For several ß-amyloid and first-generation tau-PET radiotracers, it has been shown that early-phase images can be used as a surrogate of neuronal injury. Therefore, we investigated the performance of early acquisitions of the novel tau-PET radiotracer [18F]PI-2620 as a potential substitute for [18F]fluorodeoxyglucose ([18F]FDG). METHODS: Twenty-six subjects were referred with suspected tauopathies or overlapping parkinsonian syndromes (Alzheimer's disease, progressive supranuclear palsy, corticobasal syndrome, multi-system atrophy, Parkinson's disease, multi-system atrophy, Parkinson's disease, frontotemporal dementia) and received a dynamic [18F]PI-2620 tau-PET (0-60 min p.i.) and static [18F]FDG-PET (30-50 min p.i.). Regional standardized uptake value ratios of early-phase images (single frame SUVr) and the blood flow estimate (R1) of [18F]PI-2620-PET were correlated with corresponding quantification of [18F]FDG-PET (global mean/cerebellar normalization). Reduced tracer uptake in cortical target regions was also interpreted visually using 3-dimensional stereotactic surface projections by three more and three less experienced readers. Spearman rank correlation coefficients were calculated between early-phase [18F]PI-2620 tau-PET and [18F]FDG-PET images for all cortical regions and frequencies of disagreement between images were compared for both more and less experienced readers. RESULTS: Highest agreement with [18F]FDG-PET quantification was reached for [18F]PI-2620-PET acquisition from 0.5 to 2.5 min p.i. for global mean (lowest R = 0.69) and cerebellar scaling (lowest R = 0.63). Correlation coefficients (summed 0.5-2.5 min SUVr & R1) displayed strong agreement in all cortical target regions for global mean (RSUVr 0.76, RR1 = 0.77) and cerebellar normalization (RSUVr 0.68, RR1 = 0.68). Visual interpretation revealed high regional correlations between early-phase tau-PET and [18F]FDG-PET. There were no relevant differences between more and less experienced readers. CONCLUSION: Early-phase imaging of [18F]PI-2620 can serve as a surrogate biomarker for neuronal injury. Dynamic imaging or a dual time-point protocol for tau-PET imaging could supersede additional [18F]FDG-PET imaging by indexing both the distribution of tau and the extent of neuronal injury.


Assuntos
Doença de Alzheimer , Tomografia Computadorizada por Raios X , Doença de Alzheimer/diagnóstico por imagem , Biomarcadores , Fluordesoxiglucose F18 , Humanos , Tomografia por Emissão de Pósitrons
13.
Cerebellum ; 19(2): 275-285, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31997138

RESUMO

The capacity to acquire and retain new motor skills is essential for everyday behavior and a prerequisite to regain functional independence following impairments of motor function caused by brain damage, e.g., ischemic stroke. Learning a new motor skill requires repeated skill practice and passes through different online and offline learning stages that are mediated by specific dynamic interactions between distributed brain regions including the cerebellum. Motor sequence learning is an extensively studied paradigm of motor skill learning, yet the role of the cerebellum during online and offline stages remains controversial. Here, we studied patients with chronic cerebellar stroke and healthy control participants to further elucidate the role of the cerebellum during acquisition and consolidation of sequential motor skills. Motor learning was assessed by an ecologically valid explicit sequential finger tapping paradigm and retested after an interval of 8 h to assess consolidation. Compared to healthy controls, chronic cerebellar stroke patients displayed significantly lower motor sequence performance independent of whether the ipsilesional or contralesional hand was used for task execution. However, the ability to improve performance during training (i.e., online learning) and to consolidate training-induced skill formation was similar in patients and controls. Findings point to an essential role of the cerebellum in motor sequence production that cannot be compensated, while its role in online and offline motor sequence learning seems to be either negligible or amenable to compensatory mechanisms. This further suggests that residual functional impairments caused by cerebellar stroke may be mitigated even months later by additional skill training.


Assuntos
Cerebelo/fisiopatologia , Aprendizagem/fisiologia , Consolidação da Memória/fisiologia , Destreza Motora/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
14.
Neurocrit Care ; 33(3): 708-717, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32198728

RESUMO

BACKGROUND/OBJECTIVE: Delirium is a common complication in critically ill patients with a negative impact on hospital length of stay, morbidity, and mortality. Little is known on how neurological deficits affect the outcome of commonly used delirium screening tools such as the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU) and the Intensive Care Delirium Screening Checklist (ICDSC) in neurocritical care patients. METHODS: Over a period of 1 month, all patients admitted to a neurocritical care and stroke unit at a single academic center were prospectively screened for delirium using both CAM-ICU and ICDSC. Tool-based delirium screening was compared with delirium evaluation by the treating clinical team. Additionally, ICD-10 delirium criteria were assessed. RESULTS: One hundred twenty-three patients with a total of 644 daily screenings were included. Twenty-three patients (18.7%) were diagnosed with delirium according to the clinical evaluation. Delirium incidence amounted to 23.6% (CAM-ICU) and 26.8% (ICDSC). Sensitivity and specificity of both screening tools were 66.9% and 93.3% for CAM-ICU and 69.9% and 93.9% for ICDSC, respectively. Patients identified with delirium by either CAM-ICU or ICDSC presented a higher proportion of neurological deficits such as impaired consciousness, expressive aphasia, impaired language comprehension, and hemineglect. Subsequently, generalized estimating equations identified a significant association between impaired consciousness (as indexed by Richmond Agitation and Sedation Scale) and a positive delirium assessment with both CAM-ICU and ICDSC, while impaired language comprehension and hemineglect were only associated with a positive CAM-ICU result. CONCLUSIONS: A positive delirium screening with both CAM-ICU and ICDSC in neurocritical care and stroke unit patients was found to be significantly associated with the presence of neurological deficits. These findings underline the need for a more specific delirium screening tool in neurocritical care patients.


Assuntos
Delírio , Acidente Vascular Cerebral , Lista de Checagem , Cuidados Críticos , Delírio/diagnóstico , Feminino , Humanos , Unidades de Terapia Intensiva , Masculino , Projetos Piloto , Prognóstico , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico
15.
Neural Plast ; 2019: 2689790, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31428143

RESUMO

The retention of a new sequential motor skill relies on repeated practice and subsequent consolidation in the absence of active skill practice. While the early phase of skill acquisition remains relatively unaffected in older adults, posttraining consolidation appears to be selectively impaired by advancing age. Motor learning is associated with posttraining changes of oscillatory alpha and beta neuronal activities in the motor cortex. However, whether or not these oscillatory dynamics relate to posttraining consolidation and how they relate to the age-specific impairment of motor consolidation in older adults remains elusive. Transcranial alternating current stimulation (tACS) is a noninvasive brain stimulation technique capable of modulating such neuronal oscillations. Here, we examined whether tACS targeting M1 immediately following explicit motor sequence training is capable of modulating motor skill consolidation in older adults. In two sets of double-blind, sham-controlled experiments, tACS targeting left M1 was applied at either 10 Hz (alpha-tACS) or 20 Hz (beta-tACS) immediately after termination of a motor sequence training with the right (dominant) hand. Task performance was retested after an interval of 6 hours to assess consolidation of the training-acquired skill. EEG was recorded over left M1 to be able to detect local after-effects on oscillatory activity induced by tACS. Relative to the sham intervention, consolidation was selectively disrupted by posttraining alpha-tACS of M1, while posttraining beta-tACS of M1 had no effect on delayed retest performance compared to the sham intervention. No significant postinterventional changes of oscillatory activity in M1 were detected following alpha-tACS or beta-tACS. Our findings point to a frequency-specific interaction of tACS with posttraining motor memory processing and may suggest an inhibitory role of immediate posttraining alpha oscillations in M1 with respect to motor consolidation in healthy older adults.


Assuntos
Aprendizagem/fisiologia , Córtex Motor/fisiologia , Destreza Motora/fisiologia , Desempenho Psicomotor/fisiologia , Idoso , Método Duplo-Cego , Potencial Evocado Motor/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Transcraniana por Corrente Contínua
16.
Cereb Cortex ; 27(8): 4010-4021, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27405329

RESUMO

Activity-dependent changes of postsynaptic Ca2+-concentration are influenced by a variety of different Ca2+-channels and play an important role in synaptic plasticity. Paired associative stimulation (PAS) and theta-burst stimulation (TBS) are noninvasive magnetic stimulation protocols used in human subjects to induce lasting corticospinal excitability changes that have been likened to synaptic long-term potentiation and long-term depression. To better characterize the Ca2+-related physiological mechanisms underlying PAS- and TBS-induced plasticity, we examined the impact of different Ca2+-sources. PAS-induced facilitation of corticospinal excitability was blocked by NMDA-receptor blocker dextromethorphan (DXM) and L-type voltage gated Ca2+ channels (VGCC) blocker nimodipine (NDP), but turned into depression by T-type VGCC blocker ethosuximide (ESM). Although, surprisingly, static corticospinal excitability was increased by the combination of DXM and NDP, PAS-induced facilitation was blocked. TBS-induced facilitation of corticospinal excitability, which has previously been shown to be turned into depression by L-type VGCC blocker NDP (Wankerl K, Weise D, Gentner R, Rumpf J, Classen J. 2010. L-type voltage-gated Ca2+ channels: a single molecular switch for long-term potentiation/long-term depression-like plasticity and activity-dependent metaplasticity in humans. J Neurosci. 30(18):6197-6204.), was blocked, but not reverted, by T-type VGCC blocker ESM. The different patterns of Ca2+-channel modulation of PAS- and TBS-induced plasticity may point to an important role of backpropagating action potentials in PAS-induced plasticity, similar as in spike-timing dependent synaptic plasticity, and to a requirement of dendritic Ca2+-dependent spikes in TBS-induced plasticity.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo T/metabolismo , Córtex Motor/fisiologia , Plasticidade Neuronal/fisiologia , Estimulação Magnética Transcraniana/métodos , Adolescente , Adulto , Bloqueadores dos Canais de Cálcio/farmacologia , Eletromiografia , Potencial Evocado Motor/efeitos dos fármacos , Potencial Evocado Motor/fisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Mãos/fisiologia , Humanos , Masculino , Córtex Motor/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Tratos Piramidais/efeitos dos fármacos , Tratos Piramidais/metabolismo , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/metabolismo , Adulto Jovem
17.
Cereb Cortex ; 27(2): 1588-1601, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26802074

RESUMO

Older adults exhibit deficits in motor memory consolidation; however, little is known about the cerebral correlates of this impairment. We thus employed fMRI to investigate the neural substrates underlying motor sequence memory consolidation, and the modulatory influence of post-learning sleep, in healthy older adults. Participants were trained on a motor sequence and retested following an 8-h interval including wake or diurnal sleep as well as a 22-h interval including a night of sleep. Results demonstrated that a post-learning nap improved offline consolidation across same- and next-day retests. This enhanced consolidation was reflected by increased activity in the putamen and the medial temporal lobe, including the hippocampus, regions that have previously been implicated in sleep-dependent neural plasticity in young adults. Moreover, for the first time in older adults, the neural substrates subserving initial motor learning, including the putamen, cerebellum, and parietal cortex, were shown to forecast subsequent consolidation depending on whether a post-learning nap was afforded. Specifically, sufficient activation in a motor-related network appears to be necessary to trigger sleep-facilitated consolidation in older adults. Our findings not only demonstrate that post-learning sleep can enhance motor memory consolidation in older adults, but also provide the system-level neural correlates of this beneficial effect.


Assuntos
Aprendizagem/fisiologia , Consolidação da Memória/fisiologia , Memória/fisiologia , Destreza Motora/fisiologia , Sono/fisiologia , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Atividade Motora/fisiologia , Plasticidade Neuronal/fisiologia
18.
Neuroimage ; 158: 58-69, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28673880

RESUMO

Power and precision grasps are two interrelated, kinematically distinct types of finger movements. We examined whether these types of motor actions may be spatially differently represented in the human central nervous system. In healthy participants representations of finger movements were mapped by delivering single pulse TMS to multiple scalp regions covering the left primary motor cortex (M1). Finger joint motions were recorded from the right hand using a data glove. Principal component analysis was used to extract local subspaces representing the TMS-evoked movement data from each scalp region. Voluntary power and precision grasps were reconstructed with these subspaces. The spatial properties of these reconstructions were analyzed for each grasp type using a general linear model. We found overlapping, yet distinct spatial representations for precision and power grasps with precision grasps represented slightly posterior compared to a more uniform distribution for power grasps. Differential spatial encoding of both grasp types may point towards a representation of power grasps within a phylogenetically older M1 area at the crown of the precentral gyrus and of precision grasps in a newer area in the depth of the central sulcus. Results also support the idea of separate synergistic movement representations in the human motor system.


Assuntos
Mapeamento Encefálico/métodos , Força da Mão/fisiologia , Córtex Motor/anatomia & histologia , Córtex Motor/fisiologia , Movimento/fisiologia , Adulto , Feminino , Dedos/inervação , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Análise de Componente Principal , Estimulação Magnética Transcraniana
19.
Mov Disord ; 32(12): 1784-1788, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29082542

RESUMO

BACKGROUND: Methamphetamine abuse has been linked to an increased risk of Parkinson's disease. OBJECTIVE: The objective of this study was to investigate structural abnormality of the substantia nigra in past methamphetamine users using transcranial sonography. METHODS: In a cross-sectional, observational study, echogenicity of the substantia nigra was assessed in 59 past methamphetamine users and 59 matched controls. The frequencies of an abnormal spatial extension of the substantia nigra as well as the average sizes of left and right substantia nigra were evaluated. RESULTS: The average echogenic size of the substantia nigra was larger in methamphetamine users (0.22 ± 0.06 cm2 ) when compared with controls (0.17 ± 0.05 cm2 , P < .001). Furthermore, the frequency of enlarged, echogenic substantia nigra was increased in methamphetamine users (42% vs 12% in controls, P < .001). Partial correlation analysis revealed an association of echogenic substantia nigra size with estimated total lifetime intake of methamphetamine (r55 = 0.395, P = .002). CONCLUSIONS: Current data link methamphetamine abuse in humans to injury of substantia nigra neurons and an increased risk of Parkinson's disease. © 2017 International Parkinson and Movement Disorder Society.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas/diagnóstico por imagem , Transtornos Relacionados ao Uso de Anfetaminas/etiologia , Estimulantes do Sistema Nervoso Central/efeitos adversos , Metanfetamina/efeitos adversos , Substância Negra/diagnóstico por imagem , Adulto , Estudos de Casos e Controles , Estudos Transversais , Feminino , Humanos , Masculino , Estudos Retrospectivos , Fumar/patologia , Ultrassonografia Doppler Transcraniana , Adulto Jovem
20.
Mov Disord ; 30(13): 1848-52, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26395561

RESUMO

OBJECTIVE: This study was undertaken to address the question of whether pigmentation may be mechanistically linked with Parkinson's disease. METHODS: In a cross-sectional, observational study, 116 healthy subjects received transcranial sonography of the substantia nigra. Pigmentation phenotype was assessed using the Fitzpatrick skin phototype classification, and five additional phenotypic pigmentation traits as well as a photographic method (Melanin index) in a subgroup of 46 subjects. RESULTS: Lighter skin phototype was associated with larger echogenic substantia nigra area and increased prevalence of abnormally enlarged echogenic substantia nigra area. The strongest association of substantia nigra echogenicity and phenotypic pigmentation traits was found for hair color and facial tanning. INTERPRETATION: Findings suggest an increasing prevalence of structural abnormality of substantia nigra with decreasing darkness of skin and thus may provide additional evidence in favor of a pathogenic link of pigmentation and Parkinson's disease.


Assuntos
Pigmentação/fisiologia , Substância Negra/diagnóstico por imagem , Ultrassonografia Doppler Transcraniana , Adulto , Análise de Variância , Estudos Transversais , Feminino , Humanos , Masculino , Fenótipo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA