Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Biol Cell ; 18(9): 3523-32, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17596521

RESUMO

It is not known how the volume of the cell nucleus is set, nor how the ratio of nuclear volume to cell volume (N/C) is determined. Here, we have measured the size of the nucleus in growing cells of the budding yeast Saccharomyces cerevisiae. Analysis of mutant yeast strains spanning a range of cell sizes revealed that the ratio of average nuclear volume to average cell volume was quite consistent, with nuclear volume being approximately 7% that of cell volume. At the single cell level, nuclear and cell size were strongly correlated in growing wild-type cells, as determined by three different microscopic approaches. Even in G1-phase, nuclear volume grew, although it did not grow quite as fast as overall cell volume. DNA content did not appear to have any immediate, direct influence on nuclear size, in that nuclear size did not increase sharply during S-phase. The maintenance of nuclear size did not require continuous growth or ribosome biogenesis, as starvation and rapamycin treatment had little immediate impact on nuclear size. Blocking the nuclear export of new ribosomal subunits, among other proteins and RNAs, with leptomycin B also had no obvious effect on nuclear size. Nuclear expansion must now be factored into conceptual and mathematical models of budding yeast growth and division. These results raise questions as to the unknown force(s) that expand the nucleus as yeast cells grow.


Assuntos
Núcleo Celular/metabolismo , Tamanho das Organelas , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Transporte Ativo do Núcleo Celular , Nucléolo Celular/metabolismo , Núcleo Celular/ultraestrutura , Tamanho Celular , Proteínas de Fluorescência Verde/metabolismo , Carioferinas/metabolismo , Microscopia Eletrônica , Mutação/genética , Sinais de Localização Nuclear , Receptores Citoplasmáticos e Nucleares/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteína Exportina 1
2.
Trends Genet ; 18(9): 479-85, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12175809

RESUMO

To remain viable, cells have to coordinate cell growth with cell division. In yeast, this occurs at two control points: the boundaries between G1 and S phases, also known as Start, and between G2 and M phases. Theoretically, coordination can be achieved by independent regulation of growth and division, or by participation of surveillance mechanisms in which cell size feeds back into cell-cycle control. This article discusses recent advances in the identification of sizing mechanisms in budding and in fission yeast, and how these mechanisms integrate with environmental stimuli. A comparison of the G1-S and G2-M size-control modules in the two species reveals a degree of conservation higher than previously thought. This reinforces the notion that internal sizing could be a conserved feature of cell-cycle control throughout eukaryotes.


Assuntos
Tamanho Celular/fisiologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Saccharomyces cerevisiae/citologia , Especificidade da Espécie
3.
Genes Dev ; 18(20): 2491-505, 2004 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15466158

RESUMO

Cell-size homeostasis entails a fundamental balance between growth and division. The budding yeast Saccharomyces cerevisiae establishes this balance by enforcing growth to a critical cell size prior to cell cycle commitment (Start) in late G1 phase. Nutrients modulate the critical size threshold, such that cells are large in rich medium and small in poor medium. Here, we show that two potent negative regulators of Start, Sfp1 and Sch9, are activators of the ribosomal protein (RP) and ribosome biogenesis (Ribi) regulons, the transcriptional programs that dictate ribosome synthesis rate in accord with environmental and intracellular conditions. Sfp1 and Sch9 are required for carbon-source modulation of cell size and are regulated at the level of nuclear localization and abundance, respectively. Sfp1 nuclear concentration responds rapidly to nutrient and stress conditions and is regulated by the Ras/PKA and TOR signaling pathways. In turn, Sfp1 influences the nuclear localization of Fhl1 and Ifh1, which bind to RP gene promoters. Starvation or the absence of Sfp1 causes Fhl1 and Ifh1 to localize to nucleolar regions, concomitant with reduced RP gene transcription. These findings suggest that nutrient signals set the critical cell-size threshold via Sfp1 and Sch9-mediated control of ribosome biosynthetic rates.


Assuntos
Ciclo Celular/fisiologia , Processos de Crescimento Celular/fisiologia , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Quinases/metabolismo , Transcrição Gênica/fisiologia , Proteínas Quinases Ativadas por AMP , Northern Blotting , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/fisiologia , Perfilação da Expressão Gênica , Proteínas de Fluorescência Verde , Imunoprecipitação , Microscopia , Proteínas Quinases/fisiologia , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/fisiologia , Transativadores/metabolismo
4.
Cell ; 117(7): 899-913, 2004 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-15210111

RESUMO

Cyclin-dependent kinase (CDK) activity initiates the eukaryotic cell division cycle by turning on a suite of gene expression in late G1 phase. In metazoans, CDK-dependent phosphorylation of the retinoblastoma tumor suppressor protein (Rb) alleviates repression of E2F and thereby activates G1/S transcription. However, in yeast, an analogous G1 phase target of CDK activity has remained elusive. Here we show that the cell size regulator Whi5 inhibits G1/S transcription and that this inhibition is relieved by CDK-mediated phosphorylation. Deletion of WHI5 bypasses the requirement for upstream activators of the G1/S transcription factors SBF/MBF and thereby accelerates the G1/S transition. Whi5 is recruited to G1/S promoter elements via its interaction with SBF/MBF in vivo and in vitro. In late G1 phase, CDK-dependent phosphorylation dissociates Whi5 from SBF and drives Whi5 out of the nucleus. Elimination of CDK activity at the end of mitosis allows Whi5 to reenter the nucleus to again repress G1/S transcription. These findings harmonize G1/S control in eukaryotes.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Proteínas Repressoras/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Anticorpos Monoclonais/metabolismo , Núcleo Celular/metabolismo , Tamanho Celular/genética , Cromatina/metabolismo , Cruzamentos Genéticos , Epistasia Genética , Fase G1 , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Genes Reguladores , Modelos Biológicos , Fosforilação , Testes de Precipitina , Regiões Promotoras Genéticas , Proteínas/análise , RNA/análise , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Fase S , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA