Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cancer Metastasis Rev ; 32(3-4): 501-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23612741

RESUMO

In cancer dormancy, residual tumor cells persist in a patient with no apparent clinical symptoms, only to potentially become clinically relevant at a later date. In prostate cancer (PCa), the primary tumor is often removed and many patients experience a prolonged period (>5 years) with no evidence of disease before recurrence. These characteristics make PCa an excellent candidate for the study of tumor cell dormancy. However, the mechanisms that constitute PCa dormancy have not been clearly defined. Additionally, the definition of tumor cell dormancy varies in the literature. Therefore, we have separated tumor cell dormancy in this review into three categories: (a) micrometastatic dormancy--a group of tumor cells that cannot increase in number due to a restrictive proliferation/apoptosis equilibrium. (b) Angiogenic dormancy--a group of tumor cells that cannot expand beyond the formation of a micrometastasis due to a lack of angiogenic potential. (c) Conditional dormancy--an individual cell or a very small number of cells that cannot proliferate without the appropriate cues from the microenvironment, but do not require angiogenesis to do so. This review aims to identify currently known markers, mechanisms, and models of tumor dormancy, in particular as they relate to PCa, and highlight current opportunities for advancement in our understanding of clinical cancer dormancy.


Assuntos
Neoplasias da Próstata/patologia , Apoptose , Proliferação de Células , Progressão da Doença , Humanos , Masculino , Neoplasia Residual , Prognóstico , Neoplasias da Próstata/diagnóstico
2.
Biophys J ; 100(3): 573-582, 2011 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-21281571

RESUMO

Recent studies have suggested that extracellular matrix rigidity regulates cancer invasiveness, including the formation of cellular invadopodial protrusions; however, the relevant mechanical range is unclear. Here, we used a combined analysis of tissue-derived model basement membrane (BM) and stromal matrices and synthetic materials to understand how substrate rigidity regulates invadopodia. Urinary bladder matrix-BM (UBM-BM) was found to be a rigid material with elastic moduli of 3-8 MPa, as measured by atomic force microscopy and low-strain tensile testing. Stromal elastic moduli were ∼6-fold lower, indicating a more compliant material. Using synthetic substrates that span kPa-GPa moduli, we found a peak of invadopodia-associated extracellular matrix degradation centered around 30 kPa, which also corresponded to a peak in invadopodia/cell. Surprisingly, we observed another peak in invadopodia numbers at 2 GPa as well as gene expression changes that indicate cellular sensing of very high moduli. Based on the measured elastic moduli of model stroma and BM, we expected to find more invadopodia formation on the stroma, and this was verified on the stromal versus BM side of UBM-BM. These data suggest that cells can sense a wide range of rigidities, up into the GPa range. Furthermore, there is an optimal rigidity range for invadopodia activity that may be limited by BM rigidity.


Assuntos
Extensões da Superfície Celular/metabolismo , Matriz Extracelular/metabolismo , Resinas Acrílicas/farmacologia , Animais , Membrana Basal/efeitos dos fármacos , Membrana Basal/metabolismo , Fenômenos Biomecânicos/efeitos dos fármacos , Extensões da Superfície Celular/efeitos dos fármacos , Módulo de Elasticidade/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Microscopia de Força Atômica , Modelos Biológicos , Poliuretanos/farmacologia , Pressão , Sus scrofa , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/metabolismo
3.
Biomaterials ; 64: 33-44, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26115412

RESUMO

Cancer patients frequently develop skeletal metastases that significantly impact quality of life. Since bone metastases remain incurable, a clearer understanding of molecular mechanisms regulating skeletal metastases is required to develop new therapeutics that block establishment of tumors in bone. While many studies have suggested that the microenvironment contributes to bone metastases, the factors mediating tumors to progress from a quiescent to a bone-destructive state remain unclear. In this study, we hypothesized that the "soil" of the bone microenvironment, specifically the rigid mineralized extracellular matrix, stimulates the transition of the tumor cells to a bone-destructive phenotype. To test this hypothesis, we synthesized 2D polyurethane (PUR) films with elastic moduli ranging from the basement membrane (70 MPa) to cortical bone (3800 MPa) and measured expression of genes associated with mechanotransduction and bone metastases. We found that expression of Integrin ß3 (Iß3), as well as tumor-produced factors associated with bone destruction (Gli2 and parathyroid hormone related protein (PTHrP)), significantly increased with matrix rigidity, and that blocking Iß3 reduced Gli2 and PTHrP expression. To identify the mechanism by which Iß3 regulates Gli2 and PTHrP (both are also known to be regulated by TGF-ß), we performed Förster resonance energy transfer (FRET) and immunoprecipitation, which indicated that Iß3 co-localized with TGF-ß Receptor Type II (TGF-ß RII) on rigid but not compliant films. Finally, transplantation of tumor cells expressing Iß3 shRNA into the tibiae of athymic nude mice significantly reduced PTHrP and Gli2 expression, as well as bone destruction, suggesting a crucial role for tumor-produced Iß3 in disease progression. This study demonstrates that the rigid mineralized bone matrix can alter gene expression and bone destruction in an Iß3/TGF-ß-dependent manner, and suggests that Iß3 inhibitors are a potential therapeutic approach for blocking tumor transition to a bone destructive phenotype.


Assuntos
Integrina beta3/fisiologia , Proteínas de Neoplasias/fisiologia , Osteólise/etiologia , Maleabilidade , Proteínas Serina-Treonina Quinases/fisiologia , Receptores de Fatores de Crescimento Transformadores beta/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Microambiente Tumoral/fisiologia , Adenocarcinoma/patologia , Adenocarcinoma/secundário , Animais , Neoplasias Ósseas/complicações , Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/secundário , Linhagem Celular Tumoral , Módulo de Elasticidade , Matriz Extracelular/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Integrina beta3/efeitos dos fármacos , Integrina beta3/genética , Fatores de Transcrição Kruppel-Like/biossíntese , Fatores de Transcrição Kruppel-Like/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Proteínas Nucleares/biossíntese , Proteínas Nucleares/genética , Receptor do Fator de Crescimento Transformador beta Tipo II , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína Gli2 com Dedos de Zinco
4.
Data Brief ; 4: 440-6, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26306316

RESUMO

The contents of this data in brief are related to the article titled "Matrix Rigidity Regulates the Transition of Tumor Cells to a Bone-Destructive Phenotype through Integrin ß3 and TGF-ß Receptor Type II". In this DIB we will present our supplemental data investigating Integrin expression, attachment of cells to various adhesion molecules, and changes in gene expression in multiple cancer cell lines. Since the interactions of Integrins with adsorbed matrix proteins are thought to affect the ability of cancer cells to interact with their underlying substrates, we examined the expression of Integrin ß1, ß3, and ß5 in response to matrix rigidity. We found that only Iß3 increased with increasing substrate modulus. While it was shown that fibronectin greatly affects the expression of tumor-produced factors associated with bone destruction (parathyroid hormone-related protein, PTHrP, and Gli2), poly-l-lysine, vitronectin and type I collagen were also analyzed as potential matrix proteins. Each of the proteins was independently adsorbed on both rigid and compliant polyurethane films which were subsequently used to culture cancer cells. Poly-l-lysine, vitronectin and type I collagen all had negligible effects on PTHrP or Gli2 expression, but fibronectin was shown to have a dose dependent effect. Finally, altering the expression of Iß3 demonstrated that it is required for tumor cells to respond to the rigidity of the matrix, but does not affect other cell growth or viability. Together these data support the data presented in our manuscript to show that the rigidity of bone drives Integrinß3/TGF-ß crosstalk, leading to increased expression of Gli2 and PTHrP.

5.
PLoS One ; 10(6): e0130565, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26090669

RESUMO

Dissemination of prostate cancer (PCa) cells to the bone marrow is an early event in the disease process. In some patients, disseminated tumor cells (DTC) proliferate to form active metastases after a prolonged period of undetectable disease known as tumor dormancy. Identifying mechanisms of PCa dormancy and reactivation remain a challenge partly due to the lack of in vitro models. Here, we characterized in vitro PCa dormancy-reactivation by inducing cells from three patient-derived xenograft (PDX) lines to proliferate through tumor cell contact with each other and with bone marrow stroma. Proliferating PCa cells demonstrated tumor cell-cell contact and integrin clustering by immunofluorescence. Global gene expression analyses on proliferating cells cultured on bone marrow stroma revealed a downregulation of TGFB2 in all of the three proliferating PCa PDX lines when compared to their non-proliferating counterparts. Furthermore, constitutive activation of myosin light chain kinase (MLCK), a downstream effector of integrin-beta1 and TGF-beta2, in non-proliferating cells promoted cell proliferation. This cell proliferation was associated with an upregulation of CDK6 and a downregulation of E2F4. Taken together, our data provide the first clinically relevant in vitro model to support cellular adhesion and downregulation of TGFB2 as a potential mechanism by which PCa cells may escape from dormancy. Targeting the TGF-beta2-associated mechanism could provide novel opportunities to prevent lethal PCa metastasis.


Assuntos
Adesão Celular , Comunicação Celular , Pontos de Checagem do Ciclo Celular , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Análise por Conglomerados , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Masculino , Camundongos , Neoplasias da Próstata/genética , Células Estromais/metabolismo , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta2/metabolismo
6.
Clin Exp Metastasis ; 31(8): 945-59, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25359619

RESUMO

Parathyroid hormone-related protein (PTHrP) is an important regulator of bone destruction in bone metastatic tumors. Transforming growth factor-beta (TGF-ß) stimulates PTHrP production in part through the transcription factor Gli2, which is regulated independent of the Hedgehog signaling pathway in osteolytic cancer cells. However, inhibition of TGF-ß in vivo does not fully inhibit tumor growth in bone or tumor-induced bone destruction, suggesting other pathways are involved. While Wnt signaling regulates Gli2 in development, the role of Wnt signaling in bone metastasis is unknown. Therefore, we investigated whether Wnt signaling regulates Gli2 expression in tumor cells that induce bone destruction. We report here that Wnt activation by ß-catenin/T cell factor 4 (TCF4) over-expression or lithium chloride (LiCl) treatment increased Gli2 and PTHrP expression in osteolytic cancer cells. This was mediated through the TCF and Smad binding sites within the Gli2 promoter as determined by promoter mutation studies, suggesting cross-talk between TGF-ß and Wnt signaling. Culture of tumor cells on substrates with bone-like rigidity increased Gli2 and PTHrP production, enhanced autocrine Wnt activity and led to an increase in the TCF/Wnt signaling reporter (TOPFlash), enriched ß-catenin nuclear accumulation, and elevated Wnt-related genes by PCR-array. Stromal cells serve as an additional paracrine source of Wnt ligands and enhanced Gli2 and PTHrP mRNA levels in MDA-MB-231 and RWGT2 cells in vitro and promoted tumor-induced bone destruction in vivo in a ß-catenin/Wnt3a-dependent mechanism. These data indicate that a combination of matrix rigidity and stromal-secreted factors stimulate Gli2 and PTHrP through Wnt signaling in osteolytic breast cancer cells, and there is significant cross-talk between the Wnt and TGF-ß signaling pathways. This suggests that the Wnt signaling pathway may be a potential therapeutic target for inhibiting tumor cell response to the bone microenvironment and at the very least should be considered in clinical regimens targeting TGF-ß signaling.


Assuntos
Neoplasias Ósseas/patologia , Neoplasias da Mama/patologia , Regulação da Expressão Gênica/fisiologia , Fatores de Transcrição Kruppel-Like/genética , Neoplasias Pulmonares/patologia , Proteínas Nucleares/genética , Transdução de Sinais/fisiologia , Proteína Wnt3A/fisiologia , Animais , Western Blotting , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Nus , Proteínas Nucleares/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/genética , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Estromais/metabolismo , Células Estromais/patologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína Gli2 com Dedos de Zinco , beta Catenina/antagonistas & inibidores , beta Catenina/genética , beta Catenina/metabolismo
7.
PLoS One ; 8(10): e78881, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24205338

RESUMO

Cabozantinib is an inhibitor of multiple receptor tyrosine kinases, including MET and VEGFR2. In a phase II clinical trial in advanced prostate cancer (PCa), cabozantinib treatment improved bone scans in 68% of evaluable patients. Our studies aimed to determine the expression of cabozantinib targets during PCa progression and to evaluate its efficacy in hormone-sensitive and castration-resistant PCa in preclinical models while delineating its effects on tumor and bone. Using immunohistochemistry and tissue microarrays containing normal prostate, primary PCa, and soft tissue and bone metastases, our data show that levels of MET, P-MET, and VEGFR2 are increasing during PCa progression. Our data also show that the expression of cabozantinib targets are particularly pronounced in bone metastases. To evaluate cabozantinib efficacy on PCa growth in the bone environment and in soft tissues we used androgen-sensitive LuCaP 23.1 and castration-resistant C4-2B PCa tumors. In vivo, cabozantinib inhibited the growth of PCa in bone as well as growth of subcutaneous tumors. Furthermore, cabozantinib treatment attenuated the bone response to the tumor and resulted in increased normal bone volume. In summary, the expression pattern of cabozantinib targets in primary and castration-resistant metastatic PCa, and its efficacy in two different models of PCa suggest that this agent has a strong potential for the effective treatment of PCa at different stages of the disease.


Assuntos
Androgênios/metabolismo , Anilidas/farmacologia , Remodelação Óssea/efeitos dos fármacos , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/fisiopatologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Masculino , Camundongos , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
PLoS One ; 5(11): e15451, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21085597

RESUMO

Nearly 70% of breast cancer patients with advanced disease will develop bone metastases. Once established in bone, tumor cells produce factors that cause changes in normal bone remodeling, such as parathyroid hormone-related protein (PTHrP). While enhanced expression of PTHrP is known to stimulate osteoclasts to resorb bone, the environmental factors driving tumor cells to express PTHrP in the early stages of development of metastatic bone disease are unknown. In this study, we have shown that tumor cells known to metastasize to bone respond to 2D substrates with rigidities comparable to that of the bone microenvironment by increasing expression and production of PTHrP. The cellular response is regulated by Rho-dependent actomyosin contractility mediated by TGF-ß signaling. Inhibition of Rho-associated kinase (ROCK) using both pharmacological and genetic approaches decreased PTHrP expression. Furthermore, cells expressing a dominant negative form of the TGF-ß receptor did not respond to substrate rigidity, and inhibition of ROCK decreased PTHrP expression induced by exogenous TGF-ß. These observations suggest a role for the differential rigidity of the mineralized bone microenvironment in early stages of tumor-induced osteolysis, which is especially important in metastatic cancer since many cancers (such as those of the breast and lung) preferentially metastasize to bone.


Assuntos
Regulação Neoplásica da Expressão Gênica , Osteoclastos/metabolismo , Osteólise/genética , Proteína Relacionada ao Hormônio Paratireóideo/genética , Algoritmos , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Feminino , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Metástase Neoplásica , Osteoclastos/patologia , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Crescimento Transformador beta/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA