Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Clin Immunol ; 265: 110279, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38878807

RESUMO

Systemic lupus erythematosus is an autoimmune disease that results in immune-mediated damage to kidneys and other organs. We investigated the role of response gene to complement-32 (RGC-32), a proinflammatory and profibrotic mediator induced by TGFß and C5b-9, in nephrotoxic nephritis (NTN), an experimental model that mimics human lupus nephritis. Proteinuria, loss of renal function and kidney histopathology were attenuated in RGC-32 KO NTN mice. RGC-32 KO NTN mice displayed downregulation of the CCL20/CCR6 and CXCL9/CXCR3 ligand/receptor pairs resulting in decreased renal recruitment of IL-17+ and IFNγ+ cells and subsequent decrease in the influx of innate immune cells. RGC-32 deficiency attenuated renal fibrosis as demonstrated by decreased deposition of collagen I, III and fibronectin. Thus, RGC-32 is a unique mediator shared by the Th17 and Th1 dependent proinflammatory and profibrotic pathways and a potential novel therapeutic target in the treatment of immune complex mediated glomerulonephritis such as lupus nephritis.

2.
J Pharmacol Exp Ther ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858092

RESUMO

Interleukin (IL)-33 has been shown to centrally regulate, among other processes, inflammation and fibrosis. Both intracellular full-length (FLIL33) precursor and extracellular mature cytokine (MIL33) forms exert such regulation, albeit differentially. Drug development efforts to target the IL-33 pathway have focused mostly on MIL33 and its specific cell-surface receptor, ST2, with limited attempts to negotiate the pathophysiological contributions from FLIL33. Furthermore, even a successful strategy for targeting MIL33 effects would arguably benefit from a simultaneous attenuation of the levels of FLIL33, which remains the continuous source of MIL33 supply. We therefore sought to develop an approach to depleting FLIL33 protein levels. We previously reported that the steady-state levels of FLIL33 are controlled in part through its proteasomal degradation and that such regulation can be mapped to a segment in the N-terminal portion of FLIL33. We hypothesized that disruption of this regulation would lead to a decrease in FLIL33 levels, thus inducing a beneficial therapeutic effect in an IL-33-dependent pathology. To test this hypothesis, we designed and tested cell-permeable decoy peptides (CPDPs) which mimic the target N-terminal FLIL33 region. We argued that such mimic peptides would compete with FLIL33 for the components of the native FLIL33 production and maintenance molecular machinery. Administered in the therapeutic regimen to bleomycin-challenged mice, the tested CPDPs alleviated the overall severity of the disease by restoring body weight loss and attenuating accumulation of collagen in the lungs. This proof-of-principle study lays the foundation for future work towards the development of this prospective therapeutic approach. Significance Statement An antifibrotic therapeutic approach is proposed and preclinically tested in mice in vivo based on targeting the full-length IL-33 precursor protein. Peptide fusion constructs consisted of a cell-permeable sequence fused with a sequence mimicking an N-terminal segment of IL-33 precursor that is responsible for this protein's stability. Systemic administration of such peptides to mice in either the acute intratracheal or chronic systemic bleomycin challenge models leads to a decrease in the bleomycin-induced elevations of pulmonary IL-33 and collagen.

3.
Am J Respir Cell Mol Biol ; 66(2): 146-157, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34668840

RESUMO

Some previous studies in tissue fibrosis have suggested a profibrotic contribution from elevated expression of a protein termed either RGCC (regulator of cell cycle) or RGC-32 (response gene to complement 32 protein). Our analysis of public gene expression datasets, by contrast, revealed a consistent decrease in RGCC mRNA levels in association with pulmonary fibrosis. Consistent with this observation, we found that stimulating primary adult human lung fibroblasts with transforming growth factor (TGF)-ß in cell cultures elevated collagen expression and simultaneously attenuated RGCC mRNA and protein levels. Moreover, overexpression of RGCC in cultured lung fibroblasts attenuated the stimulating effect of TGF-ß on collagen levels. Similar to humans with pulmonary fibrosis, the levels of RGCC were also decreased in vivo in lung tissues of wild-type mice challenged with bleomycin in both acute and chronic models. Mice with constitutive RGCC gene deletion accumulated more collagen in their lungs in response to chronic bleomycin challenge than did wild-type mice. RNA-Seq analyses of lung fibroblasts revealed that RGCC overexpression alone had a modest transcriptomic effect, but in combination with TGF-ß stimulation, induced notable transcriptomic changes that negated the effects of TGF-ß, including on extracellular matrix-related genes. At the level of intracellular signaling, RGCC overexpression delayed early TGF-ß-induced Smad2/3 phosphorylation, elevated the expression of total and phosphorylated antifibrotic mediator STAT1, and attenuated the expression of a profibrotic mediator STAT3. We conclude that RGCC plays a protective role in pulmonary fibrosis and that its decline permits collagen accumulation. Restoration of RGCC expression may have therapeutic potential in pulmonary fibrosis.


Assuntos
Fibroblastos/metabolismo , Pulmão/metabolismo , Proteínas Nucleares/fisiologia , Fibrose Pulmonar/prevenção & controle , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta3/metabolismo , Animais , Ciclo Celular , Células Cultivadas , Feminino , Fibroblastos/patologia , Humanos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Proteína Smad2/genética , Transcriptoma , Fator de Crescimento Transformador beta3/genética
4.
Clin Immunol ; 238: 109020, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35462050

RESUMO

Proliferation of endothelial cells (EC) and smooth muscle cells (SMC) is a critical process in atherosclerosis. Here, we investigated the involvement of sublytic C5b-9 effector Response Gene to Complement 32 (RGC-32) in cell cycle activation, phenotypic switch, and production of extracellular matrix (ECM) in SMC. Overexpression of RGC-32 augmented C5b-9-induced cell cycle activation and proliferation of SMC in an ERK1-dependent manner and silencing of RGC-32 inhibited C5b-9-induced cell cycle activation. C5b-9-induced cell cycle activation also required phosphorylation of RGC-32 at threonine 91. We found that ECM components fibronectin and collagens I-V were expressed by SMC in human aortic atherosclerotic tissue. Silencing of RGC-32 in cultured SMC was followed by a significant reduction in TGF-ß-induced expression of SMC differentiation markers myocardin, SM22 and α-SMA, and that of collagens I, IV and V. These data suggest that RGC-32 participates in both sublytic C5b-9-induced cell cycle activation and TGF-ß-induced ECM production.


Assuntos
Aterosclerose , Proteínas de Ciclo Celular , Complexo de Ataque à Membrana do Sistema Complemento , Proteínas Musculares , Proteínas do Tecido Nervoso , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Proteínas do Sistema Complemento , Células Endoteliais , Humanos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fator de Crescimento Transformador beta
5.
Clin Immunol ; 210: 108297, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31698073

RESUMO

In this study, we investigated the role of JNK and phospho-Bcl-2 as possible biomarkers of multiple sclerosis (MS) relapse and of glatiramer acetate (GA) therapeutic response in relapsing-remitting MS patients. We enrolled a cohort of 15 GA-treated patients and measured the expression of JNK1, JNK2, phospho-JNK and phospho-Bcl-2 through Western blotting of lysates from peripheral blood mononuclear cells collected at 0, 3, 6, and 12 months after initiating GA therapy. We found significantly higher levels of JNK1 p54 and JNK2 p54 and significantly lower levels of p-Bcl-2 in relapse patients and in GA non-responders. By using receiver operating characteristic analysis, we found that the probability of accurately detecting relapse and response to GA was: 92% and 75.5%, respectively, for JNK1 p54 and 86% and 94.6%, respectively, for p-Bcl-2. Our data suggest that JNK1 and p-Bcl-2 could serve as potential biomarkers for MS relapse and the therapeutic response to GA.


Assuntos
Biomarcadores Farmacológicos/metabolismo , Biomarcadores/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Esclerose Múltipla Recidivante-Remitente/diagnóstico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Adolescente , Adulto , Idoso , Estudos de Coortes , Progressão da Doença , Feminino , Regulação da Expressão Gênica , Acetato de Glatiramer/uso terapêutico , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Fosforilação , Valor Preditivo dos Testes , Adulto Jovem
6.
Exp Mol Pathol ; 108: 97-104, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30986397

RESUMO

There is increasing awareness that in addition to the metabolic crisis of diabetic ketoacidosis (DKA) caused by severe insulin deficiency, the immune inflammatory response is likely an active multicomponent participant in both the acute and chronic insults of this medical crisis, with strong evidence of activation for both the cytokine and complement system. Recent studies report that the matrix metalloproteinase enzymes and their inhibitors are systemically activated in young Type 1 diabetes mellitus (T1D) patients during DKA and speculate on their involvement in blood-brain barrier (BBB) disruption. Based on our previous studies, we address the question if matrix metalloproteinase 9 (MMP9) is expressed in the brain in the fatal brain edema (BE) of DKA. Our data show significant expression of MMP9 on the cells present in brain intravascular areas. The presence of MMP9 in intravascular cells and that of MMP+ cells seen passing the BBB indicates a possible role in tight junction protein disruption of the BBB, possibly leading to neurological complications including BE. We have also shown that MMP9 is expressed on neurons in the hippocampal areas of both BE/DKA cases investigated, while expression of tissue inhibitor of metalloproteinases 1 (TIMP1) was reduced in the same areas. We can speculate that intraneuronal MMP9 can be a sign of neurodegeneration. Further studies are necessary to determine the role of MMP9 in the pathogenesis of the neurologic catastrophe of the brain edema of DKA. Inhibition of MMP9 expression might be helpful in preserving neuronal function and BBB integrity during DKA.


Assuntos
Cetoacidose Diabética/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Adolescente , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Edema Encefálico/genética , Edema Encefálico/metabolismo , Cetoacidose Diabética/mortalidade , Feminino , Hipocampo/metabolismo , Humanos , Metaloproteinases da Matriz/metabolismo , Neurônios/metabolismo , Junções Íntimas/metabolismo , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Transcriptoma/genética
7.
J Immunol ; 198(10): 3869-3877, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28356385

RESUMO

Th17 cells play a critical role in autoimmune diseases, including multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis. Response gene to complement (RGC)-32 is a cell cycle regulator and a downstream target of TGF-ß that mediates its profibrotic activity. In this study, we report that RGC-32 is preferentially upregulated during Th17 cell differentiation. RGC-32-/- mice have normal Th1, Th2, and regulatory T cell differentiation but show defective Th17 differentiation in vitro. The impaired Th17 differentiation is associated with defects in IFN regulatory factor 4, B cell-activating transcription factor, retinoic acid-related orphan receptor γt, and SMAD2 activation. In vivo, RGC-32-/- mice display an attenuated experimental autoimmune encephalomyelitis phenotype accompanied by decreased CNS inflammation and reduced frequency of IL-17- and GM-CSF-producing CD4+ T cells. Collectively, our results identify RGC-32 as a novel regulator of Th17 cell differentiation in vitro and in vivo and suggest that RGC-32 is a potential therapeutic target in multiple sclerosis and other Th17-mediated autoimmune diseases.


Assuntos
Diferenciação Celular/imunologia , Encefalomielite Autoimune Experimental/imunologia , Regulação da Expressão Gênica , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Células Th17/fisiologia , Animais , Diferenciação Celular/efeitos dos fármacos , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/fisiopatologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/biossíntese , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/deficiência , Proteínas Nucleares/farmacologia , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Células Th1/imunologia , Células Th17/imunologia , Células Th17/patologia
8.
Exp Mol Pathol ; 105(2): 175-180, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30028960

RESUMO

We have previously shown that SIRT1 mRNA expression was significantly lower in relapsing MS patients compared to those in remission. Our goal was to longitudinally investigate the role of active, phosphorylated SIRT1 (p-SIRT1) as a potential biomarker of relapse and predictor for response to glatiramer acetate (GA) treatment in patients with relapsing remitting multiple sclerosis (MS). We also want to investigate the downstream effects of SIRT1 activation by measuring the trimethylation of histone 3 at lysine 9 (H3K9me3). A cohort of 15 GA-treated patients was clinically monitored using the Expanded Disability Status Scale (EDSS) and peripheral blood mononuclear cells (PBMCs) were collected at 0, 3, 6, and 12 months after initiation of the therapy. P-SIRT1 and H3K9me3 levels were assayed by Western blotting using specific antibodies. Statistically significant lower levels of p-SIRT1 protein (p < 0.0001) and H3K9me3 (p = 0.001) were found during relapses when compared to stable MS patients. Non-responders to GA treatment were defined as patients who exhibited at least two relapses following initiation of GA treatment. Statistically significant lower levels of p-SIRT1 protein (p = 0.02) and H3K9me3 (p = 0.004) were found in GA non-responders compared to responders. Using receiver operating characteristic analysis, area under the curve (AUC) for p-SIRT1 was 77% (p = 0.007) and for H3K9me3 was 81% (p = 0.002) for prediction of relapse. For predicting responsiveness to GA treatment, AUC was 75% (P = 0.01) for H3K9me3. Our data suggest that p-SIRT1 and H3K9me3 could serve as potential biomarkers for MS relapse. In addition, H3K9me3 could serve as possible biomarker to predict response to GA treatment.


Assuntos
Acetato de Glatiramer/uso terapêutico , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Sirtuína 1/metabolismo , Adulto , Biomarcadores Farmacológicos/metabolismo , Estudos de Coortes , Metilação de DNA , Feminino , Histonas/genética , Histonas/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/enzimologia , Esclerose Múltipla Recidivante-Remitente/genética , Esclerose Múltipla Recidivante-Remitente/metabolismo , Fosforilação , Recidiva , Sirtuína 1/genética
9.
J Immunol ; 196(4): 1529-40, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26792801

RESUMO

IL-21 promotes B cell and CTL responses in vivo, conferring IL-21 with a role in both humoral and cellular responses. Because CTL can target and eliminate autoreactive B cells, we investigated whether IL-21R signaling in CD8 T cells would alter the expansion of autoreactive B cells in an autoimmune setting. We addressed this question using the parent→F1 murine model of acute and chronic (lupus-like) graft-versus-host disease (GVHD) as models of a CTL-mediated or T-dependent B cell-mediated response, respectively. Induction of acute GVHD using IL-21R-deficient donor T cells resulted in decreased peak donor CD8 T cell numbers and decreased CTL effector function due to impaired granzyme B/perforin and Fas/Fas ligand pathways and a phenotype of low-intensity chronic GVHD with persistent host B cells, autoantibody production, and mild lupus-like renal disease. CTL effector maturation was critically dependent on IL-21R signaling in Ag-specific donor CD8, but not CD4, T cells. Conversely, treatment of DBA/2J→F1 chronic GVHD mice with IL-21 strongly promoted donor CD8 T cell expansion and rescued defective donor anti-host CTLs, resulting in host B cell elimination, decreased autoantibody levels, and attenuated renal disease, despite evidence of concurrently enhanced CD4 help for B cells and heightened B cell activation. These results demonstrate that, in the setting of lupus-like CD4 T cell-driven B cell hyperactivity, IL-21 signaling on Ag-specific donor CD8 T cells is critical for CTL effector maturation, whereas a lack of IL-21R downregulates CTL responses that would otherwise limit B cell hyperactivity and autoantibody production.


Assuntos
Linfócitos B/imunologia , Linfócitos T CD8-Positivos/imunologia , Doença Enxerto-Hospedeiro/imunologia , Subunidade alfa de Receptor de Interleucina-21/metabolismo , Interleucinas/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Autoanticorpos/biossíntese , Linfócitos B/patologia , Linfócitos T CD4-Positivos/imunologia , Modelos Animais de Doenças , Subunidade alfa de Receptor de Interleucina-21/deficiência , Subunidade alfa de Receptor de Interleucina-21/genética , Interleucinas/administração & dosagem , Lúpus Eritematoso Sistêmico/prevenção & controle , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos DBA
10.
Exp Mol Pathol ; 102(2): 191-197, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28109694

RESUMO

SIRT1, a NAD dependent histone and protein deacetylase, is a member of the histone deacetylase class III family. We previously showed that SIRT1 mRNA expression is significantly lower in peripheral blood mononuclear cells (PBMCs) of multiple sclerosis (MS) patients during relapses than in stable patients. We have now investigated SIRT1 as a possible biomarker to predict relapse as well as responsiveness to glatiramer acetate (GA) treatment in relapsing-remitting MS (RRMS) patients. Over the course of 2years, a cohort of 15 GA-treated RRMS patients were clinically monitored using the Expanded Disability Status Scale and assessed for MS relapses. Blood samples collected from MS patients were analyzed for levels of SIRT1 and histone H3 lysine 9 (H3K9) acetylation and dimethylation. During relapses, MS patients had a lower expression of SIRT1 mRNA than did stable MS patients. In addition, there was a significant decrease in H3K9 dimethylation (H3K9me2) during relapses in MS patients when compared to stable patients (p=0.01). Responders to GA treatment had significantly higher SIRT1 mRNA (p=0.01) and H3K9me2 levels than did non-responders (p=0.018). Receiver operating characteristic analysis was used to assess the predictive power of SIRT1 and H3K9me2 as putative biomarkers: for SIRT1 mRNA, the predictive value for responsiveness to GA treatment was 70% (p=0.04) and for H3K9me2 was 71% (p=0.03). Our data suggest that SIRT1 and H3K9me2 could serve as potential biomarkers for evaluating patients' responsiveness to GA therapy in order to help guide treatment decisions in MS.


Assuntos
Acetato de Glatiramer/uso terapêutico , Histonas/metabolismo , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/genética , Sirtuína 1/metabolismo , Acetilação , Adulto , Biomarcadores/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Recidiva , Sirtuína 1/genética , Adulto Jovem
11.
Exp Mol Pathol ; 101(2): 221-230, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27619159

RESUMO

The complement system is an important player in the development of atherosclerosis. Previously reported as a cell cycle regulator, RGC-32 is an essential effector of the terminal complement complex, C5b-9. In this study, our aims were to determine the expression of RGC-32 in the human atherosclerotic arterial wall and to delineate the mechanisms through which RGC-32 affects C5b-9-induced endothelial cell proliferation and migration. We now demonstrate that RGC-32 is expressed in human aortic atherosclerotic wall and that RGC-32 expression increases with the progression of atherosclerosis. Furthermore, silencing of RGC-32 expression abolished C5b-9-induced human aortic endothelial cell (HAEC) proliferation and migration. Of the 279 genes differentially expressed in HAECs after RGC-32 silencing, the genes involved in cell adhesion and cell cycle activation were significantly regulated by RGC-32. RGC-32 silencing caused a significant reduction in the expression of cyclin D1, cyclin D3, Akt, ROCK1, Rho GDP dissociation inhibitor alpha and profilin. These data suggest that RGC-32 mediates HAEC migration through the regulation of RhoA and ROCK1 expression and is involved in actin cytoskeletal organization. Thus, RGC-32 has promising therapeutic potential with regard to angiogenesis and atherosclerosis.


Assuntos
Aorta/patologia , Aterosclerose/patologia , Proteínas de Ciclo Celular/metabolismo , Movimento Celular , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Proteínas Musculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Idoso , Idoso de 80 Anos ou mais , Aorta/metabolismo , Aterosclerose/genética , Western Blotting , Proliferação de Células , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Inativação Gênica , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Mitose , Miócitos de Músculo Liso/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transcrição Gênica
12.
Exp Mol Pathol ; 99(3): 498-505, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26407760

RESUMO

Currently there is critical need for the identification of reliable biomarkers to help guide clinical management of multiple sclerosis (MS) patients. We investigated the combined roles of Response Gene to Complement 32 (RGC-32), FasL, CDC2, AKT, and IL-21 as possible biomarkers of relapse and response to glatiramer acetate (GA) treatment in relapsing-remitting MS (RRMS) patients. Over the course of 2 years, a cohort of 15 GA-treated RRMS patients was clinically monitored and peripheral blood mononuclear cells (PBMCs) were collected at 0, 3, 6, and 12 months. Target gene mRNA expression was measured in patients' isolated PBMCs by real-time qRT-PCR. Compared to stable MS patients, those with acute relapses exhibited decreased expression of RGC-32 (p<0.0001) and FasL (p<0.0001), increased expression of IL-21 (p=0.04), but no change in CDC2 or AKT. Compared to non-responders, responders to GA treatment showed increased expression of RGC-32 (p<0.0001) and FasL (p<0.0001), and decreased expression of IL-21 (p=0.02). Receiver operating characteristic (ROC) analysis was used to assess the predictive accuracy of each putative biomarker. The probability of accurately detecting relapse was 90% for RGC-32, 88% for FasL, and 75% for IL-21. The probability of accurately detecting response to GA was 85% for RGC-32, 90% for FasL, and 85% for IL-21. Our data suggest that RGC-32, FasL, and IL-21 could serve as potential biomarkers for the detection of MS relapse and response to GA therapy.


Assuntos
Proteínas de Ciclo Celular/genética , Acetato de Glatiramer/uso terapêutico , Leucócitos Mononucleares/metabolismo , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/genética , Proteínas Musculares/genética , Proteínas do Tecido Nervoso/genética , Adulto , Biomarcadores/análise , Biomarcadores/metabolismo , Proteínas de Ciclo Celular/metabolismo , Feminino , Humanos , Interleucinas/metabolismo , Masculino , Pessoa de Meia-Idade , Proteínas Musculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Recidiva
13.
Exp Mol Pathol ; 98(3): 328-37, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25770350

RESUMO

We have previously shown that RGC-32 is involved in cell cycle regulation in vitro. To define the in vivo role of RGC-32, we generated RGC-32 knockout mice. These mice developed normally and did not spontaneously develop overt tumors. To assess the effect of RGC-32 deficiency on cell cycle activation in T cells, we determined the proliferative rates of CD4(+) and CD8(+) T cells from the spleens of RGC-32(-/-) mice, as compared to wild-type (WT, RGC-32(+/+)) control mice. After stimulation with anti-CD3/anti-CD28, CD4(+) T cells from RGC-32(-/-) mice displayed a significant increase in [(3)H]-thymidine incorporation when compared to WT mice. In addition, both CD4(+) and CD8(+) T cells from RGC-32(-/-) mice displayed a significant increase in the proportion of proliferating Ki67(+) cells, indicating that in T cells, RGC-32 has an inhibitory effect on cell cycle activation induced by T-cell receptor/CD28 engagement. Furthermore, Akt and FOXO1 phosphorylation induced in stimulated CD4(+) T-cells from RGC-32(-/-) mice were significantly higher, indicating that RGC-32 inhibits cell cycle activation by suppressing FOXO1 activation. We also found that IL-2 mRNA and protein expression were significantly increased in RGC-32(-/-) CD4(+) T cells when compared to RGC-32(+/+) CD4(+) T cells. In addition, the effect of RGC-32 on the cell cycle and IL-2 expression was inhibited by pretreatment of the samples with LY294002, indicating a role for phosphatidylinositol 3-kinase (PI3K). Thus, RGC-32 is involved in controlling the cell cycle of T cells in vivo, and this effect is mediated by IL-2 in a PI3K-dependent fashion.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Ciclo Celular , Proteínas Nucleares/metabolismo , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Cromonas/farmacologia , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/metabolismo , Interleucina-2/genética , Interleucina-2/metabolismo , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Morfolinas/farmacologia , Proteínas Nucleares/genética , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
14.
Exp Mol Pathol ; 96(2): 139-48, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24397908

RESUMO

SIRT1 is a member of the histone deacetylase (HDAC) class III family of proteins and is an NAD-dependent histone and protein deacetylase. SIRT1 can induce chromatin silencing through the deacetylation of histones and can modulate cell survival by regulating the transcriptional activities. We investigated the expression of SIRT1 in multiple sclerosis (MS) brains and in peripheral blood mononuclear cells (PBMCs) obtained from patients with relapsing-remitting multiple sclerosis. We found that SIRT1 was expressed by a significant number of cells in both acute and chronic active lesions. We also found that CD4(+), CD68(+), oligodendrocytes (OLG), and glial fibrillar acidic protein (GFAP)(+) cells in MS plaques co-localized with SIRT1. Our results show a statistically significant decrease in SIRT1 mRNA and protein expression in PBMCs during relapses when compared to the levels in controls and stable MS patients. On the other hand, HDAC3 expression was not significantly changed during relapses in MS patients. SIRT1 expression correlated with that of histone H3 lysine 9 acetylation (H3K9ac) and methylation (H3K9me2). SIRT1 mRNA expression was significantly reduced after RGC-32 silencing, indicating a role for RGC-32 in the regulation of SIRT1 expression. Furthermore, we investigated the role of SIRT1 in the expression of FasL and found a significant increase in FasL expression and apoptosis after inhibition of SIRT1 expression. Our data suggest that SIRT1 may represent a biomarker of relapses and a potential new target for therapeutic intervention in MS.


Assuntos
Encéfalo/patologia , Histonas/metabolismo , Leucócitos Mononucleares/metabolismo , Esclerose Múltipla/genética , Sirtuína 1/sangue , Acetilação , Adolescente , Adulto , Idoso , Apoptose/genética , Biomarcadores/metabolismo , Encéfalo/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Feminino , Regulação da Expressão Gênica , Histona Desacetilases/metabolismo , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Humanos , Leucócitos Mononucleares/patologia , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/sangue , Esclerose Múltipla/patologia , Proteínas Musculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , RNA Mensageiro/biossíntese , Sirtuína 1/biossíntese , Sirtuína 1/genética
15.
J Immunol ; 189(2): 1081-93, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22723520

RESUMO

T cell-driven B cell hyperactivity plays an essential role in driving autoimmune disease development in systemic lupus erythematosus. IL-21 is a member of the type I cytokine family with pleiotropic activities. It regulates B cell differentiation and function, promotes T follicular helper (T(FH)) cell and Th17 cell differentiation, and downregulates the induction of T regulatory cells. Although IL-21 has been implicated in systemic lupus erythematosus, the relative importance of IL-21R signaling in CD4(+) T cells versus B cells is not clear. To address this question, we took advantage of two induced models of lupus-like chronic graft-versus-host disease by using wild-type or IL-21R(-/-) mice as donors in the parent-into-F1 model and as hosts in the Bm12→B6 model. We show that IL-21R expression on donor CD4(+) T cells is essential for sustaining T(FH) cell number and subsequent help for B cells, resulting in autoantibody production and more severe lupus-like renal disease, but it does not alter the balance of Th17 cells and regulatory T cells. In contrast, IL-21R signaling on B cells is critical for the induction and maintenance of germinal centers, plasma cell differentiation, autoantibody production, and the development of renal disease. These results demonstrate that IL-21 promotes autoimmunity in chronic graft-versus-host disease through both CD4(+) T cell- and B cell-intrinsic mechanisms and suggest that IL-21 blockade may attenuate B cell hyperactivity, as well as the aberrant T(FH) cell pathway that contributes to lupus pathogenesis.


Assuntos
Subpopulações de Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Doença Enxerto-Hospedeiro/imunologia , Subunidade alfa de Receptor de Interleucina-21/fisiologia , Interleucinas/fisiologia , Lúpus Eritematoso Sistêmico/imunologia , Animais , Subpopulações de Linfócitos B/patologia , Linfócitos T CD4-Positivos/patologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Doença Crônica , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Doença Enxerto-Hospedeiro/complicações , Doença Enxerto-Hospedeiro/patologia , Subunidade alfa de Receptor de Interleucina-21/biossíntese , Subunidade alfa de Receptor de Interleucina-21/deficiência , Interleucinas/biossíntese , Lúpus Eritematoso Sistêmico/etiologia , Lúpus Eritematoso Sistêmico/patologia , Cooperação Linfocítica/genética , Cooperação Linfocítica/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Células Th17/imunologia , Células Th17/patologia , Regulação para Cima/genética , Regulação para Cima/imunologia
16.
Exp Mol Pathol ; 94(1): 17-28, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23000427

RESUMO

Response gene to complement (RGC)-32 is a novel molecule that plays an important role in cell proliferation. We investigated the expression of RGC-32 in multiple sclerosis (MS) brain and in peripheral blood mononuclear cells (PBMCs) obtained from patients with relapsing-remitting multiple sclerosis. We found that CD3(+), CD68(+), and glial fibrillar acidic protein (GFAP)(+) cells in MS plaques co-localized with RGC-32. Our results show a statistically significant decrease in RGC-32 mRNA expression in PBMCs during relapses when compared to the levels in stable MS patients. This decrease might be useful in predicting disease activity in patients with relapsing-remitting MS. RGC-32 expression was also correlated with that of FasL mRNA during relapses. FasL mRNA expression was significantly reduced after RGC-32 silencing, indicating a role for RGC-32 in the regulation of FasL expression. In addition, the expression of Akt1, cyclin D1, and IL-21 mRNA was significantly increased during MS relapses when compared to levels in healthy controls. Furthermore, we investigated the role of RGC-32 in TGF-ß-induced extracellular matrix expression in astrocytes. Blockage of RGC-32 using small interfering RNA significantly inhibits TGF-ß induction of procollagen I, fibronectin and of the reactive astrocyte marker α-smooth muscle actin (α-SMA). Our data suggest that RGC-32 plays a dual role in MS, both as a regulator of T-cells mediated apoptosis and as a promoter of TGF-ß-mediated profibrotic effects in astrocytes.


Assuntos
Encéfalo/metabolismo , Proteínas de Ciclo Celular/metabolismo , Leucócitos Mononucleares/metabolismo , Esclerose Múltipla Recidivante-Remitente/metabolismo , Proteínas Musculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Actinas/metabolismo , Adolescente , Adulto , Idoso , Antígenos CD/análise , Antígenos de Diferenciação Mielomonocítica/análise , Apoptose , Astrócitos/metabolismo , Complexo CD3/análise , Proteínas de Ciclo Celular/genética , Proliferação de Células , Colágeno Tipo I/metabolismo , Proteínas do Sistema Complemento/metabolismo , Ciclina D1/biossíntese , Ciclina D1/genética , Matriz Extracelular/metabolismo , Proteína Ligante Fas/genética , Feminino , Fibronectinas/metabolismo , Proteína Glial Fibrilar Ácida , Humanos , Interleucinas/biossíntese , Interleucinas/genética , Masculino , Pessoa de Meia-Idade , Proteínas Musculares/genética , Proteínas do Tecido Nervoso/genética , Proteínas Proto-Oncogênicas c-akt/biossíntese , Proteínas Proto-Oncogênicas c-akt/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Linfócitos T/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Adulto Jovem
17.
Front Immunol ; 14: 1216457, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37533859

RESUMO

The brains of COVID-19 patients are affected by the SARS-CoV-2 virus, and these effects may contribute to several COVID-19 sequelae, including cognitive dysfunction (termed "long COVID" by some researchers). Recent advances concerning the role of neuroinflammation and the consequences for brain function are reviewed in this manuscript. Studies have shown that respiratory SARS-CoV-2 infection in mice and humans is associated with selective microglial reactivity in the white matter, persistently impaired hippocampal neurogenesis, a decrease in the number of oligodendrocytes, and myelin loss. Brain MRI studies have revealed a greater reduction in grey matter thickness in the orbitofrontal cortex and parahippocampal gyrus, associated with a greater reduction in global brain size, in those with SARS-CoV-2 and a greater cognitive decline. COVID-19 can directly infect endothelial cells of the brain, potentially promoting clot formation and stroke; complement C3 seems to play a major role in this process. As compared to controls, the brain tissue of patients who died from COVID-19 have shown a significant increase in the extravasation of fibrinogen, indicating leakage in the blood-brain barrier; furthermore, recent studies have documented the presence of IgG, IgM, C1q, C4d, and C5b-9 deposits in the brain tissue of COVID-19 patients. These data suggest an activation of the classical complement pathway and an immune-mediated injury to the endothelial cells. These findings implicate both the classical and alternative complement pathways, and they indicate that C3b and the C5b-9 terminal complement complex (membrane attack complex, MAC) are acting in concert with neuroinflammatory and immune factors to contribute to the neurological sequelae seen in patients with COVID.


Assuntos
COVID-19 , Complexo de Ataque à Membrana do Sistema Complemento , Humanos , Camundongos , Animais , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Células Endoteliais/metabolismo , SARS-CoV-2/metabolismo , Encéfalo/metabolismo
18.
Front Immunol ; 13: 979414, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172382

RESUMO

Recent advances in understanding the pathogenesis of multiple sclerosis (MS) have brought into the spotlight the major role played by reactive astrocytes in this condition. Response Gene to Complement (RGC)-32 is a gene induced by complement activation, growth factors, and cytokines, notably transforming growth factor ß, that is involved in the modulation of processes such as angiogenesis, fibrosis, cell migration, and cell differentiation. Studies have uncovered the crucial role that RGC-32 plays in promoting the differentiation of Th17 cells, a subtype of CD4+ T lymphocytes with an important role in MS and its murine model, experimental autoimmune encephalomyelitis. The latest data have also shown that RGC-32 is involved in regulating major transcriptomic changes in astrocytes and in favoring the synthesis and secretion of extracellular matrix components, growth factors, axonal growth molecules, and pro-astrogliogenic molecules. These results suggest that RGC-32 plays a major role in driving reactive astrocytosis and the generation of astrocytes from radial glia precursors. In this review, we summarize recent advances in understanding how RGC-32 regulates the behavior of Th17 cells and astrocytes in neuroinflammation, providing insight into its role as a potential new biomarker and therapeutic target.


Assuntos
Proteínas de Ciclo Celular , Esclerose Múltipla , Proteínas Musculares , Proteínas do Tecido Nervoso , Animais , Biomarcadores , Proteínas de Ciclo Celular/genética , Proteínas do Sistema Complemento , Citocinas , Humanos , Camundongos , Proteínas Musculares/genética , Proteínas do Tecido Nervoso/genética , Doenças Neuroinflamatórias , Proteínas Nucleares/genética , Fator de Crescimento Transformador beta/metabolismo
19.
Exp Mol Pathol ; 91(1): 335-45, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21540025

RESUMO

Voltage-gated potassium (K(v)) channels play an important role in the regulation of growth factor-induced cell proliferation. We have previously shown that cell cycle activation is induced in oligodendrocytes (OLGs) by complement C5b-9, but the role of K(v) channels in these cells had not been investigated. Differentiated OLGs were found to express K(v)1.4 channels, but little K(v)1.3. Exposure of OLGs to C5b-9 modulated K(v)1.3 functional channels and increased protein expression, whereas C5b6 had no effect. Pretreatment with the recombinant scorpion toxin rOsK-1, a highly selective K(v)1.3 inhibitor, blocked the expression of K(v)1.3 induced by C5b-9. rOsK-1 inhibited Akt phosphorylation and activation by C5b-9 but had no effect on ERK1 activation. These data strongly suggest a role for K(v)1.3 in controlling the Akt activation induced by C5b-9. Since Akt plays a major role in C5b-9-induced cell cycle activation, we also investigated the effect of inhibiting K(v)1.3 channels on DNA synthesis. rOsK-1 significantly inhibited the DNA synthesis induced by C5b-9 in OLG, indicating that K(v)1.3 plays an important role in the C5b-9-induced cell cycle. In addition, C5b-9-mediated myelin basic protein and proteolipid protein mRNA decay was completely abrogated by inhibition of K(v)1.3 expression. In the brains of multiple sclerosis patients, C5b-9 co-localized with NG2(+) OLG progenitor cells that expressed K(v)1.3 channels. Taken together, these data suggest that K(v)1.3 channels play an important role in controlling C5b-9-induced cell cycle activation and OLG dedifferentiation, both in vitro and in vivo.


Assuntos
Ciclo Celular/fisiologia , Desdiferenciação Celular/fisiologia , Complexo de Ataque à Membrana do Sistema Complemento/fisiologia , Canal de Potássio Kv1.3/metabolismo , Esclerose Múltipla/metabolismo , Oligodendroglia/citologia , Animais , Animais Recém-Nascidos , Ciclo Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Esclerose Múltipla/patologia , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/fisiologia , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Ratos Sprague-Dawley , Venenos de Escorpião/farmacologia
20.
Trends Mol Med ; 27(2): 152-171, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33046407

RESUMO

Systemic lupus erythematosus (SLE) is a multisystem, chronic autoimmune disease where treatment varies by patient and disease activity. Strong preclinical results and clinical correlates have motivated development of many drugs, but many of these have failed to achieve efficacy in clinical trials. FDA approval of belimumab in 2011 was the first successful SLE drug in nearly six decades. In this article, we review insights into the molecular and clinical heterogeneity of SLE from transcriptomics studies and detail their potential impact on drug development and clinical practices. We critically examine the pipeline of SLE drugs, including past failures and their associated lessons and current promising approaches. Finally, we identify opportunities for integrating these findings and drug development with new multidisciplinary advances to enhance future SLE treatment.


Assuntos
Lúpus Eritematoso Sistêmico/terapia , Variação Biológica da População , Tomada de Decisão Clínica , Gerenciamento Clínico , Suscetibilidade a Doenças , Desenvolvimento de Medicamentos , Humanos , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/etiologia , Terapia de Alvo Molecular , Medicina de Precisão/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA