Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(7): e2210712120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36745808

RESUMO

Whole-exome sequencing of Parkinson's disease (PD) patient DNA identified single-nucleotide polymorphisms (SNPs) in the tyrosine nonreceptor kinase-2 (TNK2) gene. Although this kinase had a previously demonstrated activity in preventing the endocytosis of the dopamine reuptake transporter (DAT), a causal role for TNK2-associated dysfunction in PD remains unresolved. We postulated the dopaminergic neurodegeneration resulting from patient-associated variants in TNK2 were a consequence of aberrant or prolonged TNK2 overactivity, the latter being a failure in TNK2 degradation by an E3 ubiquitin ligase, neuronal precursor cell-expressed developmentally down-regulated-4 (NEDD4). Interestingly, systemic RNA interference protein-3 (SID-3) is the sole TNK2 ortholog in the nematode Caenorhabditis elegans, where it is an established effector of epigenetic gene silencing mediated through the dsRNA-transporter, SID-1. We hypothesized that TNK2/SID-3 represents a node of integrated dopaminergic and epigenetic signaling essential to neuronal homeostasis. Use of a TNK2 inhibitor (AIM-100) or a NEDD4 activator [N-aryl benzimidazole 2 (NAB2)] in bioassays for either dopamine- or dsRNA-uptake into worm dopaminergic neurons revealed that sid-3 mutants displayed robust neuroprotection from 6-hydroxydopamine (6-OHDA) exposures, as did AIM-100 or NAB2-treated wild-type animals. Furthermore, NEDD4 activation by NAB2 in rat primary neurons correlated to a reduction in TNK2 levels and the attenuation of 6-OHDA neurotoxicity. CRISPR-edited nematodes engineered to endogenously express SID-3 variants analogous to TNK2 PD-associated SNPs exhibited enhanced susceptibility to dopaminergic neurodegeneration and circumvented the RNAi resistance characteristic of SID-3 dysfunction. This research exemplifies a molecular etiology for PD whereby dopaminergic and epigenetic signaling are coordinately regulated to confer susceptibility or resilience to neurodegeneration.


Assuntos
Doença de Parkinson , Animais , Ratos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Dopamina/metabolismo , Oxidopamina , Neuroproteção/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Neurônios Dopaminérgicos/metabolismo , Epigênese Genética , Modelos Animais de Doenças
2.
PLoS Genet ; 18(8): e1010115, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35984862

RESUMO

The fine-tuning of gene expression is critical for all cellular processes; aberrations in this activity can lead to pathology, and conversely, resilience. As their role in coordinating organismal responses to both internal and external factors have increasingly come into focus, small non-coding RNAs have emerged as an essential component to disease etiology. Using Systemic RNA interference Defective (SID) mutants of the nematode Caenorhabditis elegans, deficient in gene silencing, we examined the potential consequences of dysfunctional epigenomic regulation in the context of Parkinson's disease (PD). Specifically, the loss of either the sid-1 or sid-3 genes, which encode a dsRNA transporter and an endocytic regulatory non-receptor tyrosine kinase, respectively, conferred neuroprotection to dopaminergic (DA) neurons in an established transgenic C. elegans strain wherein overexpression of human α-synuclein (α-syn) from a chromosomally integrated multicopy transgene causes neurodegeneration. We further show that knockout of a specific microRNA, mir-2, attenuates α-syn neurotoxicity; suggesting that the native targets of mir-2-dependent gene silencing represent putative neuroprotective modulators. In support of this, we demonstrated that RNAi knockdown of multiple mir-2 targets enhanced α-syn-induced DA neurodegeneration. Moreover, we demonstrate that mir-2 overexpression originating in the intestine can induce neurodegeneration of DA neurons, an effect that was reversed by pharmacological inhibition of SID-3 activity. Interestingly, sid-1 mutants retained mir-2-induced enhancement of neurodegeneration. Transcriptomic analysis of α-syn animals with and without a sid-1 mutation revealed 27 differentially expressed genes with human orthologs related to a variety of diseases, including PD. Among these was pgp-8, encoding a P-glycoprotein-related ABC transporter. Notably, sid-1; pgp-8 double mutants abolished the neurodegeneration resulting from intestinal mir-2 overexpression. This research positions known regulators of small RNA-dependent gene silencing within a framework that facilitates mechanistic evaluation of epigenetic responses to exogenous and endogenous factors influencing DA neurodegeneration, revealing a path toward new targets for therapeutic intervention of PD.


Assuntos
Proteínas de Caenorhabditis elegans , Doença de Parkinson , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Humanos , Doença de Parkinson/patologia , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
3.
Cancer Immunol Immunother ; 73(10): 204, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105848

RESUMO

The intricate interplay between immune and stromal cells within the tumour microenvironment (TME) significantly influences tumour progression. Myeloid cells, including tumour-associated macrophages (TAMs), neutrophils (TANs), and myeloid-derived suppressor cells (MDSCs), contribute to immune suppression in the TME (Nakamura and Smyth in Cell Mol Immunol 17(1):1-12 (2020). https://doi.org/10.1038/s41423-019-0306-1 ; DeNardo and Ruffell in Nat Rev Immunol 19(6):369-382 (2019). https://doi.org/10.1038/s41577-019-0127-6 ). This poses a significant challenge for novel immunotherapeutics that rely on host immunity to exert their effect. This systematic review explores the preclinical evidence surrounding the inhibition of phosphoinositide 3-kinase gamma (PI3Kγ) as a strategy to reverse myeloid-driven immune suppression in solid tumours. EMBASE, MEDLINE, and PubMed databases were searched on 6 October 2022 using keyword and subject heading terms to capture relevant studies. The studies, focusing on PI3Kγ inhibition in animal models, were subjected to predefined inclusion and exclusion criteria. Extracted data included tumour growth kinetics, survival endpoints, and immunological responses which were meta-analysed. PRISMA and MOOSE guidelines were followed. A total of 36 studies covering 73 animal models were included in the review and meta-analysis. Tumour models covered breast, colorectal, lung, skin, pancreas, brain, liver, prostate, head and neck, soft tissue, gastric, and oral cancer. The predominant PI3Kγ inhibitors were IPI-549 and TG100-115, demonstrating favourable specificity for the gamma isoform. Combination therapies, often involving chemotherapy, radiotherapy, immune checkpoint inhibitors, biological agents, or vaccines, were explored in 81% of studies. Analysis of tumour growth kinetics revealed a statistically significant though heterogeneous response to PI3Kγ monotherapy, whereas the tumour growth in combination treated groups were more consistently reduced. Survival analysis showed a pronounced increase in median overall survival with combination therapy. This systematic review provides a comprehensive analysis of preclinical studies investigating PI3Kγ inhibition in myeloid-driven tumour immune suppression. The identified studies underscore the potential of PI3Kγ inhibition in reshaping the TME by modulating myeloid cell functions. The combination of PI3Kγ inhibition with other therapeutic modalities demonstrated enhanced antitumour effects, suggesting a synergistic approach to overcome immune suppression. These findings support the potential of PI3Kγ-targeted therapies, particularly in combination regimens, as a promising avenue for future clinical exploration in diverse solid tumour types.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Animais , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Microambiente Tumoral/imunologia , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Células Mieloides/imunologia , Células Mieloides/metabolismo , Imunoterapia/métodos , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico
4.
J Pediatr Gastroenterol Nutr ; 79(2): 278-289, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38828781

RESUMO

OBJECTIVES: To review recent evaluations of pediatric patients with intestinal failure (IF) for intestinal transplantation (ITx), waiting list decisions, and outcomes of patients listed and not listed for ITx at our center. METHODS: Retrospective chart review of 97 patients evaluated for ITx from January 2014 to December 2021 including data from referring institutions and protocol laboratory testing, body imaging, endoscopy, and liver biopsy in selected cases. Survival analysis used Kaplan-Meier estimates and Cox proportional hazards regression. RESULTS: Patients were referred almost entirely from outside institutions, one-third because of intestinal failure-associated liver disease (IFALD), two-thirds because of repeated infective and non-IFALD complications under minimally successful intestinal rehabilitation, and a single patient because of lost central vein access. The majority had short bowel syndrome (SBS). Waiting list placement was offered to 67 (69%) patients, 40 of whom for IFALD. The IFALD group was generally younger and more likely to have SBS, have received more parenteral nutrition, have demonstrated more evidence of chronic inflammation and have inferior kidney function compared to those offered ITx for non-IFALD complications and those not listed. ITx was performed in 53 patients. Superior postevaluation survival was independently associated with higher serum creatinine (hazard ratio [HR] 15.410, p = 014), whereas inferior postevaluation survival was associated with ITx (HR 0.515, p = 0.035) and higher serum fibrinogen (HR 0.994, p = 0.005). CONCLUSIONS: Despite recent improvements in IF management, IFALD remains a prominent reason for ITx referral. Complications of IF inherent to ITx candidacy influence postevaluation and post-ITx survival.


Assuntos
Intestinos , Listas de Espera , Humanos , Estudos Retrospectivos , Masculino , Feminino , Criança , Pré-Escolar , Lactente , Intestinos/transplante , Adolescente , Insuficiência Intestinal , Síndrome do Intestino Curto/cirurgia , Hepatopatias/cirurgia
5.
J Med Virol ; 95(1): e28423, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36546412

RESUMO

The SARS-CoV-2 variant Omicron emerged in late 2021. In British Columbia (BC), Canada, and globally, three genetically distinct subvariants of Omicron, BA.1, BA.2, and BA.5, emerged and became dominant successively within an 8-month period. SARS-CoV-2 subvariants continue to circulate in the population, acquiring new mutations that have the potential to alter infectivity, immunity, and disease severity. Here, we report a propensity-matched severity analysis from residents of BC over the course of the Omicron wave, including 39,237 individuals infected with BA.1, BA.2, or BA.5 based on paired high-quality sequence data and linked to comprehensive clinical outcomes data between December 23, 2021 and August 31, 2022. Relative to BA.1, BA.2 cases were associated with a 15% and 28% lower risk of hospitalization and intensive care unit (ICU) admission (aHRhospital = 1.17; 95% confidence interval [CI] = 1.096-1.252; aHRICU = 1.368; 95% CI = 1.152-1.624), whereas BA.5 infections were associated with an 18% higher risk of hospitalization (aHRhospital = 1.18; 95% CI = 1.133-1.224) after accounting for age, sex, comorbidities, vaccination status, geography, and social determinants of health. Phylogenetic analysis revealed no specific subclades associated with more severe clinical outcomes for any Omicron subvariant. In summary, BA.1, BA.2, and BA.5 subvariants were associated with differences in clinical severity, emphasizing how variant-specific monitoring programs remain critical components of patient and population-level public health responses as the pandemic continues.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Colúmbia Britânica/epidemiologia , SARS-CoV-2/genética , Estudos de Coortes , Filogenia , COVID-19/epidemiologia
6.
Proc Natl Acad Sci U S A ; 117(12): 6663-6674, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32139610

RESUMO

The ubiquitous gasotransmitter hydrogen sulfide (H2S) has been recognized to play a crucial role in human health. Using cystathionine γ-lyase (CSE)-deficient mice, we demonstrate an unexpected role of H2S in Mycobacterium tuberculosis (Mtb) pathogenesis. We showed that Mtb-infected CSE-/- mice survive longer than WT mice, and support reduced pathology and lower bacterial burdens in the lung, spleen, and liver. Similarly, in vitro Mtb infection of macrophages resulted in reduced colony forming units in CSE-/- cells. Chemical complementation of infected WT and CSE-/- macrophages using the slow H2S releaser GYY3147 and the CSE inhibitor DL-propargylglycine demonstrated that H2S is the effector molecule regulating Mtb survival in macrophages. Furthermore, we demonstrate that CSE promotes an excessive innate immune response, suppresses the adaptive immune response, and reduces circulating IL-1ß, IL-6, TNF-α, and IFN-γ levels in response to Mtb infection. Notably, Mtb infected CSE-/- macrophages show increased flux through glycolysis and the pentose phosphate pathway, thereby establishing a critical link between H2S and central metabolism. Our data suggest that excessive H2S produced by the infected WT mice reduce HIF-1α levels, thereby suppressing glycolysis and production of IL-1ß, IL-6, and IL-12, and increasing bacterial burden. Clinical relevance was demonstrated by the spatial distribution of H2S-producing enzymes in human necrotic, nonnecrotic, and cavitary pulmonary tuberculosis (TB) lesions. In summary, CSE exacerbates TB pathogenesis by altering immunometabolism in mice and inhibiting CSE or modulating glycolysis are potential targets for host-directed TB control.


Assuntos
Carbono/metabolismo , Cistationina gama-Liase/fisiologia , Sulfeto de Hidrogênio/toxicidade , Mycobacterium tuberculosis/imunologia , Tuberculose Pulmonar/etiologia , Alcinos/farmacologia , Animais , Cistationina gama-Liase/antagonistas & inibidores , Citocinas/metabolismo , Inibidores Enzimáticos/farmacologia , Glicina/análogos & derivados , Glicina/farmacologia , Glicólise , Sulfeto de Hidrogênio/metabolismo , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Linfócitos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium tuberculosis/efeitos dos fármacos , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Células Mieloides/metabolismo , Transdução de Sinais , Tuberculose Pulmonar/metabolismo , Tuberculose Pulmonar/patologia
7.
Biotechnol Bioeng ; 118(10): 3733-3743, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33913507

RESUMO

As the number of antibody drugs being approved and marketed increases, our knowledge of what makes potential drug candidates a successful product has increased tremendously. One of the critical parameters that have become clear in the field is the importance of mAb "developability." Efforts are being increasingly focused on simultaneously selecting molecules that exhibit both desirable biological potencies and manufacturability attributes. In the current study mutations to improve the developability profile of a problematic antibody that inconsistently precipitates in a batch scale-dependent fashion using a standard platform purification process are described. Initial bioinformatic analysis showed the molecule has no obvious sequence or structural liabilities that might lead it to precipitate. Subsequent analysis of the molecule revealed the presence of two unusual positively charged mutations on the light chain at the interface of VH and VL domains, which were hypothesized to be the primary contributor to molecule precipitation during process development. To investigate this hypothesis, straightforward reversion to the germline of these residues was carried out. The resulting mutants have improved expression titers and recovered stability within a forced precipitation assay, without any change to biological activity. Given the time pressures of drug development in industry, process optimization of the lead molecule was carried out in parallel to the "retrospective" mutagenesis approach. Bespoke process optimization for large-scale manufacturing was successful. However, we propose that such context-dependent sequence liabilities should be included in the arsenal of in silico developability screening early in development; particularly since this specific issue can be efficiently mitigated without the requirement for extensive screening of lead molecule variants.


Assuntos
Anticorpos Monoclonais , Engenharia de Proteínas , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/genética , Linhagem Celular , Humanos , Solubilidade
8.
Physiol Rev ; 90(3): 859-904, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20664075

RESUMO

Gut microbiota is an assortment of microorganisms inhabiting the length and width of the mammalian gastrointestinal tract. The composition of this microbial community is host specific, evolving throughout an individual's lifetime and susceptible to both exogenous and endogenous modifications. Recent renewed interest in the structure and function of this "organ" has illuminated its central position in health and disease. The microbiota is intimately involved in numerous aspects of normal host physiology, from nutritional status to behavior and stress response. Additionally, they can be a central or a contributing cause of many diseases, affecting both near and far organ systems. The overall balance in the composition of the gut microbial community, as well as the presence or absence of key species capable of effecting specific responses, is important in ensuring homeostasis or lack thereof at the intestinal mucosa and beyond. The mechanisms through which microbiota exerts its beneficial or detrimental influences remain largely undefined, but include elaboration of signaling molecules and recognition of bacterial epitopes by both intestinal epithelial and mucosal immune cells. The advances in modeling and analysis of gut microbiota will further our knowledge of their role in health and disease, allowing customization of existing and future therapeutic and prophylactic modalities.


Assuntos
Fenômenos Fisiológicos Bacterianos , Doença , Saúde , Intestinos/microbiologia , Intestinos/fisiopatologia , Animais , Gastroenteropatias/microbiologia , Gastroenteropatias/fisiopatologia , Técnicas Genéticas , Interações Hospedeiro-Patógeno , Humanos , Técnicas Microbiológicas , Transdução de Sinais
9.
J Allergy Clin Immunol ; 138(1): 47-56, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27373325

RESUMO

Recent research indicates that chronic inflammatory diseases, including allergies and autoimmune and neuropsychiatric diseases, share common pathways of cellular and molecular dysregulation. It was the aim of the International von-Behring-Röntgen Symposium (October 16-18, 2014, in Marburg, Germany) to discuss recent developments in this field. These include a concept of biodiversity; the contribution of urbanization, lifestyle factors, and nutrition (eg, vitamin D); and new mechanisms of metabolic and immune dysregulation, such as extracellular and intracellular RNAs and cellular and mitochondrial stress. Epigenetic mechanisms contribute further to altered gene expression and therefore to the development of chronic inflammation. These novel findings provide the foundation for further development of preventive and therapeutic strategies.


Assuntos
Inflamação/etiologia , Inflamação/metabolismo , Animais , Doença Crônica , Metabolismo Energético , Meio Ambiente , Predisposição Genética para Doença , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade , Microbiota/imunologia
10.
J Allergy Clin Immunol ; 135(1): 100-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25145536

RESUMO

BACKGROUND: Resident gut microbiota are now recognized as potent modifiers of host immune responses in various scenarios. Recently, we demonstrated that perinatal exposure to vancomycin, but not streptomycin, profoundly alters gut microbiota and enhances susceptibility to a TH2 model of allergic asthma. OBJECTIVE: Here we sought to further clarify the etiology of these changes by determining whether perinatal antibiotic treatment has a similar effect on the TH1/TH17-mediated lung disease, hypersensitivity pneumonitis. METHODS: Hypersensitivity pneumonitis was induced in C57BL/6 wild-type or recombination-activating gene 1-deficient mice treated perinatally with vancomycin or streptomycin by repeated intranasal administration of Saccharopolyspora rectivirgula antigen. Disease severity was assessed by measuring lung inflammation, pathology, cytokine responses, and serum antibodies. Microbial community analyses were performed on stool samples via 16S ribosomal RNA pyrosequencing and correlations between disease severity and specific bacterial taxa were identified. RESULTS: Surprisingly, in contrast to our findings in an allergic asthma model, we found that the severity of hypersensitivity pneumonitis was unaffected by vancomycin, but increased dramatically after streptomycin treatment. This likely reflects an effect on the adaptive, rather than innate, immune response because the effects of streptomycin were not observed during the early phases of disease and were abrogated in recombination-activating gene 1-deficient mice. Interestingly, Bacteroidetes dominated the intestinal microbiota of streptomycin-treated animals, while vancomycin promoted the expansion of the Firmicutes. CONCLUSIONS: Perinatal antibiotics exert highly selective effects on resident gut flora, which, in turn, lead to very specific alterations in susceptibility to TH2- or TH1/TH17-driven lung inflammatory disease.


Assuntos
Alveolite Alérgica Extrínseca/imunologia , Alveolite Alérgica Extrínseca/microbiologia , Antibacterianos/efeitos adversos , Trato Gastrointestinal/microbiologia , Microbiota , Estreptomicina/efeitos adversos , Alveolite Alérgica Extrínseca/sangue , Alveolite Alérgica Extrínseca/patologia , Animais , Animais Recém-Nascidos , Citocinas/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Pulmão/imunologia , Pulmão/patologia , Camundongos Endogâmicos C57BL , Saccharopolyspora , Índice de Gravidade de Doença , Vancomicina/farmacologia
11.
Mol Microbiol ; 91(3): 618-34, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24303899

RESUMO

The mechanisms that facilitate dissemination of the highly invasive spirochaete, Treponema pallidum, are incompletely understood. Previous studies showed the treponemal metalloprotease pallilysin (Tp0751) possesses fibrin clot degradation capability, suggesting a role in treponemal dissemination. In the current study we report characterization of the functionally linked protein Tp0750. Structural modelling predicts Tp0750 contains a von Willebrand factor type A (vWFA) domain, a protein-protein interaction domain commonly observed in extracellular matrix (ECM)-binding proteins. We report Tp0750 is a serine protease that degrades the major clot components fibrinogen and fibronectin. We also demonstrate Tp0750 cleaves a matrix metalloprotease (MMP) peptide substrate that is targeted by several MMPs, enzymes central to ECM remodelling. Through proteomic analyses we show Tp0750 binds the endothelial fibrinolytic receptor, annexin A2, in a specific and dose-dependent manner. These results suggest Tp0750 constitutes a multifunctional protein that is able to (1) degrade infection-limiting clots by both inhibiting clot formation through degradation of host coagulation cascade proteins and promoting clot dissolution by complexing with host proteins involved in the fibrinolytic cascade and (2) facilitate ECM degradation via MMP-like proteolysis of host components. We propose that through these activities Tp0750 functions in concert with pallilysin to enable T. pallidum dissemination.


Assuntos
Proteínas de Bactérias/metabolismo , Fibrinogênio/metabolismo , Fibrinólise , Fibronectinas/metabolismo , Serina Proteases/metabolismo , Treponema pallidum/enzimologia , Anexina A2/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteólise , Serina Proteases/química , Serina Proteases/genética , Treponema pallidum/genética
12.
EMBO Rep ; 13(5): 440-7, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22422004

RESUMO

Allergic asthma rates have increased steadily in developed countries, arguing for an environmental aetiology. To assess the influence of gut microbiota on experimental murine allergic asthma, we treated neonatal mice with clinical doses of two widely used antibiotics--streptomycin and vancomycin--and evaluated resulting shifts in resident flora and subsequent susceptibility to allergic asthma. Streptomycin treatment had little effect on the microbiota and on disease, whereas vancomycin reduced microbial diversity, shifted the composition of the bacterial population and enhanced disease severity. Neither antibiotic had a significant effect when administered to adult mice. Consistent with the 'hygiene hypothesis', our data support a neonatal, microbiota-driven, specific increase in susceptibility to experimental murine allergic asthma.


Assuntos
Antibacterianos/efeitos adversos , Asma/induzido quimicamente , Biologia Computacional/métodos , Suscetibilidade a Doenças/induzido quimicamente , Metagenoma/efeitos dos fármacos , Estreptomicina/efeitos adversos , Vancomicina/efeitos adversos , Animais , Asma/microbiologia , Feminino , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL
13.
Curr Protoc ; 4(10): e70032, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39432378

RESUMO

Mouse models remain at the forefront of immuno-oncology research, providing invaluable insights into the complex interactions between the immune system and developing tumors. While several flow cytometry panels have been developed to study cancer immunity in mice, most are limited in their capacity to address the complexity of anti-cancer immune responses. For example, many of the panels developed to date focus on a restricted number of leukocyte populations (T cells or antigen-presenting cells), failing to include the multitude of other subsets that participate in anti-cancer immunity. In addition, these panels were developed using blood or splenic leukocytes. While the immune composition of the blood or spleen can provide information on systemic immune responses to cancer, it is in the tumor microenvironment (TME) that local immunity takes place. Therefore, we optimized this spectral flow cytometry panel to identify the chief cell types that take part in cancer immunity using immune cells from cancer tissue. We used pancreatic tumors implanted both orthotopically and subcutaneously to demonstrate the panel's flexibility and suitability in diverse mouse models. The panel was also validated in peripheral immune districts (the blood, spleen, and liver of tumor-bearing mice) to allow comparisons between local and systemic anti-tumor immunity. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Tumor induction-Orthotopic Alternate Protocol: Tumor induction-Subcutaneous Basic Protocol 2: Preparation of single-cell suspensions from the tumor, spleen, liver, and blood of tumor-bearing mice Basic Protocol 3: Staining single-cell suspensions from the tumor, spleen, liver, and blood of tumor-bearing mice.


Assuntos
Modelos Animais de Doenças , Citometria de Fluxo , Animais , Citometria de Fluxo/métodos , Camundongos , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Microambiente Tumoral/imunologia , Linhagem Celular Tumoral , Neoplasias/imunologia , Neoplasias/patologia , Baço/imunologia
14.
Emerg Microbes Infect ; 13(1): 2392667, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39143912

RESUMO

Surveillance data from wildlife and poultry was used to describe the spread of highly pathogenic avian influenza (HPAI) H5N1 clade 2.3.4.4b in British Columbia (B.C.) and the Yukon, Canada from September 2022 - June 2023 compared to the first "wave" of the outbreak in this region, which occurred April - August 2022, after the initial viral introduction. Although the number of HPAI-positive poultry farms and wildlife samples was greater in "Wave 2", cases were more tightly clustered in southwestern B.C. and the most commonly affected species differed, likely due to an influx of overwintering waterfowl in the area. Eight HPAI genetic clusters, representing seven genotypes and two inter-continental viral incursions, were detected, with significant variation in the relative abundance of each cluster between the waves. Phylogenetic data suggests multiple spillover events from wild birds to poultry and mammals but could not rule out transmission among farms and among mammals.


Assuntos
Animais Selvagens , Aves , Surtos de Doenças , Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Filogenia , Aves Domésticas , Animais , Colúmbia Britânica/epidemiologia , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Aves Domésticas/virologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Animais Selvagens/virologia , Surtos de Doenças/veterinária , Aves/virologia , Genótipo , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/epidemiologia
15.
Curr Opin Gastroenterol ; 28(6): 563-9, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23010680

RESUMO

PURPOSE OF REVIEW: The prevalence of allergic diseases continues to rise globally in developed countries. Since the initial proposal of the hygiene hypothesis, there has been increasing evidence to suggest that the intestinal microbiota, particularly during early infancy, plays a critical role in regulating immune responses associated with the development of atopy. This review evaluates the key epidemiologic and mechanistic data published to date. RECENT FINDINGS: Epidemiological data have provided the framework for animal studies investigating the importance of gut commensals in allergy development. These studies provide new insights about the microbial regulation of mucosal immune responses inside and outside the gut, and how these effects may drive allergic inflammation in susceptible individuals. Specific immune cells have been identified as mediators of these microbiota-regulated allergic responses. SUMMARY: In the last year, technological advances have provided us with a better understanding of the gut microbiome in healthy and allergic individuals. Recent studies have identified the associations between particular gut microbes and different disease phenotypes, as well as identified immune cells and their mediators involved in allergy development. This research has provided a number of host and microbe targets that may be used to develop novel therapies suitable for the treatment or prevention of allergic diseases.


Assuntos
Hipersensibilidade/microbiologia , Intestinos/microbiologia , Metagenoma/imunologia , Animais , Asma/epidemiologia , Asma/imunologia , Modelos Animais de Doenças , Humanos , Hipótese da Higiene , Hipersensibilidade/epidemiologia , Hipersensibilidade/imunologia , Imunidade nas Mucosas , Intestinos/imunologia , Mucosa/imunologia
16.
Can Commun Dis Rep ; 48(6): 274-281, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37333572

RESUMO

Background: Since April 2020, mink have been recognized as a potential reservoir for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and a potential source of new variants. The objective of this report is to describe the epidemiological investigation and public health response to two coronavirus disease 2019 (COVID-19) outbreaks that involved both humans and farmed mink. Methods: An outbreak was declared on December 4, 2020, following detection of two COVID-19-positive farmworkers and elevated mink mortality on a mink farm (Farm 1) in British Columbia. The second cluster was detected on Farm 3 following detection of 1) a COVID-19 case among farm staff on April 2, 2021, 2) an indeterminate result from farm staff on May 11, 2021, and 3) subsequent SARS-CoV-2-positive mink in May 2021. Quarantine of infected farms, isolation of workers and their close contacts, and introduction of enhanced infection control practises were implemented to break chains of transmission. Results: Among mink farmworkers, 11 cases were identified at Farm 1 and 6 cases were identified at Farm 3. On both Farm 1 and Farm 3, characteristic COVID-19 symptoms were present in farm employees before signs were observed in the minks. The viral sequences from mink and human samples demonstrated close genetic relation. Phylogenetic analyses identified mink intermediates linking human cases, suggesting anthropo-zoonotic transmission. Conclusion: These were the first COVID-19 outbreaks that included infected mink herds in Canada and identified potential anthropogenic and zoonotic transmission of SARS-CoV-2. We provide insight into the positive impact of regulatory control measures and surveillance to reduce the spillover of SARS-CoV-2 mink variants into the general population.

17.
Viruses ; 14(11)2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36366515

RESUMO

BACKGROUND: Investigating antibody titers in individuals who have been both naturally infected with SARS-CoV-2 and vaccinated can provide insight into antibody dynamics and correlates of protection over time. METHODS: Human coronavirus (HCoV) IgG antibodies were measured longitudinally in a prospective cohort of qPCR-confirmed, COVID-19 recovered individuals (k = 57) in British Columbia pre- and post-vaccination. SARS-CoV-2 and endemic HCoV antibodies were measured in serum collected between Nov. 2020 and Sept. 2021 (n = 341). Primary analysis used a linear mixed-effects model to understand the effect of single dose vaccination on antibody concentrations adjusting for biological sex, age, time from infection and vaccination. Secondary analysis investigated the cumulative incidence of high SARS-CoV-2 anti-spike IgG seroreactivity equal to or greater than 5.5 log10 AU/mL up to 105 days post-vaccination. No re-infections were detected in vaccinated participants, post-vaccination by qPCR performed on self-collected nasopharyngeal specimens. RESULTS: Bivariate analysis (complete data for 42 participants, 270 samples over 472 days) found SARS-CoV-2 spike and RBD antibodies increased 14-56 days post-vaccination (p < 0.001) and vaccination prevented waning (regression coefficient, B = 1.66 [95%CI: 1.45-3.46]); while decline of nucleocapsid antibodies over time was observed (regression coefficient, B = -0.24 [95%CI: -1.2-(-0.12)]). A positive association was found between COVID-19 vaccination and endemic human ß-coronavirus IgG titer 14-56 days post vaccination (OC43, p = 0.02 & HKU1, p = 0.02). On average, SARS-CoV-2 anti-spike IgG concentration increased in participants who received one vaccine dose by 2.06 log10 AU/mL (95%CI: 1.45-3.46) adjusting for age, biological sex, and time since infection. Cumulative incidence of high SARS-CoV-2 spike antibodies (>5.5 log10 AU/mL) was 83% greater in vaccinated compared to unvaccinated individuals. CONCLUSIONS: Our study confirms that vaccination post-SARS-CoV-2 infection provides multiple benefits, such as increasing anti-spike IgG titers and preventing decay up to 85 days post-vaccination.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , Formação de Anticorpos , SARS-CoV-2 , Estudos Prospectivos , Vacinas contra COVID-19 , Anticorpos Antivirais , Vacinação , Imunoglobulina G
18.
CMAJ Open ; 9(4): E1073-E1079, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34848548

RESUMO

BACKGROUND: In April 2020, British Columbia experienced its first outbreak of COVID-19 in a remote First Nations community. The objective of this paper was to describe the outbreak, including epidemiological and laboratory findings, and the public health response. METHODS: This report summarizes an outbreak of COVID-19 on Cormorant Island, British Columbia, in March and April 2020. Confirmed cases underwent investigation and contact tracing. Supports were provided to ensure successful isolation and quarantine for cases and contacts. Messaging to the community was circulated by trusted community members. Descriptive and social network analyses were conducted to describe the outbreak as it evolved. All case specimens underwent whole-genome sequencing. RESULTS: Thirty cases of SARS-CoV-2 infection were identified. Those infected had a median age of 34 years (range 15-77), and the majority identified as female (19, 63%) and as First Nations (27, 90%). The most common symptoms included chills, cough, diarrhea, headache and fever. Five people were hospitalized (17%) and 1 died (3%). Percent positivity in the community was 18%. Transmission occurred primarily during evening social gatherings and within households. Two weeks after control measures were initiated, no further cases were identified. All cases were genetically related by 2 single nucleotide polymorphisms or fewer, and they belonged to the most dominant SARS-CoV-2 lineage present in British Columbia in April 2020. INTERPRETATION: A community-led response was essential for the effective containment of this outbreak that included 30 cases, preventing onward transmission of the virus. Lessons learned from the management of this outbreak can inform response to other similar outbreaks in First Nations communities across Canada.


Assuntos
COVID-19/epidemiologia , Surtos de Doenças , Canadenses Indígenas/estatística & dados numéricos , Adolescente , Adulto , Idoso , Colúmbia Britânica/epidemiologia , COVID-19/prevenção & controle , Busca de Comunicante/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Saúde Pública , Quarentena/métodos , População Rural/estatística & dados numéricos , SARS-CoV-2 , Viagem , Adulto Jovem
19.
J Pediatr Surg ; 56(4): 717-720, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33023750

RESUMO

BACKGROUND/PURPOSE: Owing to the frequency of gastrostomy tube placement in children and the numerous regimens used to start feeds after placement we attempted to see if it matters if the initial feeds after a gastrostomy tube placement are provided in a bolus or continuous manner. METHODS: Using a prospective randomized trial, children were randomized to initial bolus or continuous chimney feeding after gastrostomy tube placement. Feeding tolerance and complications related to the gastrostomy tube were collected for 4 weeks after placement. RESULTS: Demographics were similar in the two groups. Times to goal feeds were similar in both groups, but in the first two weeks more feeding modifications were required in the bolus group. Other than the rate of leakage during the second week after placement which occurred more in the bolus group, all other clinical outcomes were similar in the two groups. CONCLUSIONS: Other than minor, clinically insignificant differences noted above, the method of initial feeding after a gastrostomy tube placement does not affect feeding tolerance or gastrostomy tube complication in the first month after placement. LEVEL OF EVIDENCE: Therapeutic, level II.


Assuntos
Nutrição Enteral , Gastrostomia , Criança , Protocolos Clínicos , Humanos , Intubação Gastrointestinal , Estudos Prospectivos , Estudos Retrospectivos
20.
Dermatitis ; 31(3): 223-227, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32091463

RESUMO

BACKGROUND: The impact of pediatric atopic dermatitis (AD) on families is largely hidden from view, and AD is commonly misunderstood as a minor skin condition. Few studies have examined the full burden of AD from the family perspective. OBJECTIVE: The aim of the study was to assess the burden of AD on children and families using a caregiver-centered survey. METHODS: A 72-item anonymous online survey was posted on social media sites targeted to or composed of parents of children with AD. It explored the following 9 domains of impact: sleep, social isolation, time requirements, life decisions, family relationship dynamics, energy/fatigue, mental health impacts, and unmet treatment needs. Atopic dermatitis severity was reported by respondents using the Patient-Oriented Eczema Measure. Statistical analyses were conducted using R 3.6.0. RESULTS: Two hundred thirty-five individuals completed the survey during the 1-month period that it was promoted via social media. Caregivers reported frequent sleep disturbance, exhaustion, worry, and social isolation related to their child's AD. CONCLUSIONS: Results highlight the need for psychosocial support and respite care for caregivers of children with AD.


Assuntos
Ansiedade , Sobrecarga do Cuidador , Efeitos Psicossociais da Doença , Dermatite Atópica , Fadiga , Pais/psicologia , Sono , Isolamento Social , Criança , Pré-Escolar , Relações Familiares , Feminino , Humanos , Lactente , Masculino , Avaliação das Necessidades , Sistemas de Apoio Psicossocial , Índice de Gravidade de Doença , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA