Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
EMBO J ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834852

RESUMO

Protein ADP-ribosylation plays important but ill-defined roles in antiviral signalling cascades such as the interferon response. Several viruses of clinical interest, including coronaviruses, express hydrolases that reverse ADP-ribosylation catalysed by host enzymes, suggesting an important role for this modification in host-pathogen interactions. However, which ADP-ribosyltransferases mediate host ADP-ribosylation, what proteins and pathways they target and how these modifications affect viral infection and pathogenesis is currently unclear. Here we show that host ADP-ribosyltransferase activity induced by IFNγ signalling depends on PARP14 catalytic activity and that the PARP9/DTX3L complex is required to uphold PARP14 protein levels via post-translational mechanisms. Both the PARP9/DTX3L complex and PARP14 localise to IFNγ-induced cytoplasmic inclusions containing ADP-ribosylated proteins, and both PARP14 itself and DTX3L are likely targets of PARP14 ADP-ribosylation. We provide evidence that these modifications are hydrolysed by the SARS-CoV-2 Nsp3 macrodomain, shedding light on the intricate cross-regulation between IFN-induced ADP-ribosyltransferases and the potential roles of the coronavirus macrodomain in counteracting their activity.

2.
J Biol Chem ; 297(3): 101041, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34358560

RESUMO

SARS-CoV-2 nonstructural protein 3 (Nsp3) contains a macrodomain that is essential for coronavirus pathogenesis and is thus an attractive target for drug development. This macrodomain is thought to counteract the host interferon (IFN) response, an important antiviral signalling cascade, via the reversal of protein ADP-ribosylation, a posttranslational modification catalyzed by host poly(ADP-ribose) polymerases (PARPs). However, the main cellular targets of the coronavirus macrodomain that mediate this effect are currently unknown. Here, we use a robust immunofluorescence-based assay to show that activation of the IFN response induces ADP-ribosylation of host proteins and that ectopic expression of the SARS-CoV-2 Nsp3 macrodomain reverses this modification in human cells. We further demonstrate that this assay can be used to screen for on-target and cell-active macrodomain inhibitors. This IFN-induced ADP-ribosylation is dependent on PARP9 and its binding partner DTX3L, but surprisingly the expression of the Nsp3 macrodomain or the deletion of either PARP9 or DTX3L does not impair IFN signaling or the induction of IFN-responsive genes. Our results suggest that PARP9/DTX3L-dependent ADP-ribosylation is a downstream effector of the host IFN response and that the cellular function of the SARS-CoV-2 Nsp3 macrodomain is to hydrolyze this end product of IFN signaling, rather than to suppress the IFN response itself.


Assuntos
ADP-Ribosilação , COVID-19/virologia , Interferons/metabolismo , Proteínas de Neoplasias/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , SARS-CoV-2/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Humanos
3.
Artigo em Inglês | MEDLINE | ID: mdl-30069819

RESUMO

Protein tyrosine kinases (PTK), discovered in the 1970s, have been considered master regulators of biological processes with high clinical significance as targets for human diseases. Their actions are countered by protein tyrosine phosphatases (PTP), enzymes yet underrepresented as drug targets because of the high homology of their catalytic domains and high charge of their catalytic pocket. This scenario is still worse for some PTP subclasses, for example, for the atypical dual-specificity phosphatases (ADUSPs), whose biological functions are not even completely known. In this sense, the present work focuses on the dual-specificity phosphatase 3 (DUSP3), also known as VH1-related phosphatase (VHR), an uncommon regulator of mitogen-activated protein kinase (MAPK) phosphorylation. DUSP3 expression and activities are suggestive of a tumor suppressor or tumor-promoting enzyme in different types of human cancers. Furthermore, DUSP3 has other biological functions involving immune response mediation, thrombosis, hemostasis, angiogenesis, and genomic stability that occur through either MAPK-dependent or MAPK-independent mechanisms. This broad spectrum of actions is likely due to the large substrate diversity and molecular mechanisms that are still under scrutiny. The growing advances in characterizing new DUSP3 substrates will allow the development of pharmacological inhibitors relevant for possible future clinical trials. This review covers all aspects of DUSP3, since its gene cloning and crystallographic structure resolution, in addition to its classical and novel substrates and the biological processes involved, followed by an update of what is currently known about the DUSP3/VHR-inhibiting compounds that might be considered potential drugs to treat human diseases.


Assuntos
Fosfatase 3 de Especificidade Dupla/genética , Fosfatase 3 de Especificidade Dupla/fisiologia , Fosfatase 3 de Especificidade Dupla/antagonistas & inibidores , Humanos , Proteínas Quinases Ativadas por Mitógeno , Neoplasias/enzimologia , Neovascularização Patológica , Fosforilação , Proteínas Tirosina Fosfatases , Proteínas Tirosina Quinases
4.
Exp Cell Res ; 395(2): 112206, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32739212

RESUMO

The small GTPase Cdc42, a member of the Rho family, regulates essential biological processes such as cytoskeleton remodeling, migration, vesicular trafficking and cell cycle. It was demonstrated that Cdc42 overactivation through different molecular strategies increases cell sensitivity to genotoxic stress and affects the phosphorylation status of DNA damage response proteins by unknown mechanisms. By using a combination of approaches including affinity purification/mass spectrometry (AP/MS) and colocalization microscopy analysis we were able to identify Cdc42EP3/Borg2 as a putative molecular effector of these molecular and cellular events that seem to be independent of cell line or DNA damage stimuli. We then investigated the influence of Cdc42EP3/Borg2 and other potential protein partners, such as the NCK and Septin2 proteins, which could mediate cellular responses to genotoxic stress under different backgrounds of Cdc42 activity. Clonogenic assays showed a reduced cell survival when ectopically expressing the Cdc42EP3/Borg2, NCK2 or Septin2 in an overactivated Cdc42-dependent background. Moreover, endogenous NCK appears to relocate into the nucleus upon Cdc42 overactivation, especially under genotoxic stress, and promotes the suppression of Chk1 phosphorylation. In sum, our findings reinforce Cdc42 as an important player involved in the DNA damage response acting through Cdc42EP3/Borg2 and NCK proteins following genomic instability conditions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , DNA/metabolismo , Reguladores de Proteínas de Ligação ao GTP/metabolismo , Proteínas Oncogênicas/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Movimento Celular/fisiologia , Sobrevivência Celular/fisiologia , Citoesqueleto/metabolismo , Instabilidade Genômica/genética , Transdução de Sinais/fisiologia
5.
Cell Oncol (Dordr) ; 45(3): 479-504, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35567709

RESUMO

PURPOSE: Transcriptome analysis of pancreatic ductal adenocarcinoma (PDAC) has been useful to identify gene expression changes that sustain malignant phenotypes. Yet, most studies examined only tumor tissues and focused on protein-coding genes, leaving long non-coding RNAs (lncRNAs) largely underexplored. METHODS: We generated total RNA-Seq data from patient-matched tumor and nonmalignant pancreatic tissues and implemented a computational pipeline to survey known and novel lncRNAs. siRNA-mediated knockdown in tumor cell lines was performed to assess the contribution of PDAC-associated lncRNAs to malignant phenotypes. Gene co-expression network and functional enrichment analyses were used to assign deregulated lncRNAs to biological processes and molecular pathways. RESULTS: We detected 9,032 GENCODE lncRNAs as well as 523 unannotated lncRNAs, including transcripts significantly associated with patient outcome. Aberrant expression of a subset of novel and known lncRNAs was confirmed in patient samples and cell lines. siRNA-mediated knockdown of a subset of these lncRNAs (LINC01559, LINC01133, CCAT1, LINC00920 and UCA1) reduced cell proliferation, migration and invasion. Gene co-expression network analysis associated PDAC-deregulated lncRNAs with diverse biological processes, such as cell adhesion, protein glycosylation and DNA repair. Furthermore, UCA1 knockdown was shown to specifically deregulate co-expressed genes involved in DNA repair and to negatively impact DNA repair following damage induced by ionizing radiation. CONCLUSIONS: Our study expands the repertoire of lncRNAs deregulated in PDAC, thereby revealing novel candidate biomarkers for patient risk stratification. It also provides a roadmap for functional assays aimed to characterize novel mechanisms of action of lncRNAs in pancreatic cancer, which could be explored for therapeutic development.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , RNA Longo não Codificante , Adenocarcinoma/genética , Adenocarcinoma/patologia , Carcinoma Ductal Pancreático/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Pancreáticas/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Interferente Pequeno , Neoplasias Pancreáticas
6.
Cell Biochem Biophys ; 79(2): 261-269, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33479884

RESUMO

DUSP3 is a phosphatase expressed and active in several tissues that dephosphorylates tyrosine residues in many regulatory proteins of cellular activities such as proliferation, survival, and cell death. Recently, two new independent functions were assigned to this enzyme: dephosphorylation of focal adhesion kinase (FAK) and regulation of nucleotide-excision repair (NER) pathway. Genotoxic stress by UV radiation is known to affect cell morphology, adhesion, and migration for affecting, for example, the Rho GTPases that regulate actin cytoskeleton. This work investigated the intersection of DUSP3 function, XPA protein activity, and UV toxicity by examining cell migration, FAK, and SRC kinase phosphorylation status, in addition to cell morphology, in fibroblast cells proficient (MRC-5) or deficient (XPA) of the NER pathway. DUSP3 loss reduced cell migration of normal cells, which was stimulated by the genotoxic stress, effects evidenced in presence of serum mitogenic stimulus. However, NER-deficient cells migration response was the opposite since DUSP3 loss increased migration, especially after cells being exposed to UV stress. The levels of pFAK(Y397) peaked 15 min and 1 h after UV radiation in normal cells, but only slightly increased in repair-deficient cells. However, the DUSP3 knockdown strongly raised pFAK(Y397) levels in both cells, but especially in XPA cells as supported by the higher SRC activity. These effects impacted on the dynamics of actin-based structures formation, such as stress fibres, apparently dependent on DUSP3 and DNA-repair (NER) proficiency of the cells. Altogether our findings suggest this dual-phosphatase is bridging gaps between the complex regulation of cell morphology, motility, and genomic stability.


Assuntos
Movimento Celular/efeitos da radiação , Fosfatase 3 de Especificidade Dupla/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Raios Ultravioleta , Adesão Celular/efeitos da radiação , Linhagem Celular , Reparo do DNA/efeitos da radiação , Fosfatase 3 de Especificidade Dupla/antagonistas & inibidores , Fosfatase 3 de Especificidade Dupla/genética , Proteína-Tirosina Quinases de Adesão Focal/genética , Humanos , Fosforilação/efeitos da radiação , Interferência de RNA , RNA Interferente Pequeno/metabolismo
7.
Cell Cycle ; 19(12): 1545-1561, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32380926

RESUMO

The DUSP3 phosphatase regulates cell cycle, proliferation, apoptosis and senescence of different cell types, lately shown as a mediator of DNA repair processes. This work evaluated the impact of DUSP3 loss of function (lof) on DNA repair-proficient fibroblasts (MRC-5), NER-deficient cell lines (XPA and XPC) and translesion DNA synthesis (TLS)-deficient cells (XPV), after UV-radiation stress. The levels of DNA strand breaks, CPDs and 6-4-PPs have accumulated over time in all cells under DUSP3 lof, with a significant increase in NER-deficient lines. The inefficient repair of these lesions increased sub-G1 population of XPA and XPC cells 24 hours after UV treatment, notably marked by DUSP3 lof, which is associated with a reduced cell population in G1, S and G2/M phases. It was also detected an increase in S and G2/M populations of XPV and MRC-5 cells after UV-radiation exposure, which was slightly attenuated by DUSP3 lof due to a discrete increase in sub-G1 cells. The cell cycle progression was accompanied by changes in the levels of the main Cyclins (A1, B1, D1 or E1), CDKs (1, 2, 4 or 6), and the p21 Cip1 inhibitor, in a DUSP3-dependent manner. DUSP3 lof affected the proliferation of MRC-5 and XPA cells, with marked worsening of the XP phenotype after UV radiation. This work highlights the roles of DUSP3 in DNA repair fitness and in the fine control of regulatory proteins of cell cycle, essential mechanisms to maintenance of genomic stability.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Reparo do DNA/genética , Fosfatase 3 de Especificidade Dupla/metabolismo , Instabilidade Genômica , Ciclo Celular/efeitos da radiação , Proliferação de Células/genética , Proliferação de Células/efeitos da radiação , Dano ao DNA , Reparo do DNA/efeitos da radiação , Inativação Gênica/efeitos da radiação , Instabilidade Genômica/efeitos da radiação , Humanos , Dímeros de Pirimidina/metabolismo , Estresse Fisiológico/efeitos da radiação , Raios Ultravioleta
8.
Clinics (Sao Paulo) ; 73(suppl 1): e466s, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30208163

RESUMO

Protein tyrosine phosphatases have long been considered key regulators of biological processes and are therefore implicated in the origins of various human diseases. Heterozygosity, mutations, deletions, and the complete loss of some of these enzymes have been reported to cause neurodegenerative diseases, autoimmune syndromes, genetic disorders, metabolic diseases, cancers, and many other physiological imbalances. Vaccinia H1-related phosphatase, also known as dual-specificity phosphatase 3, is a protein tyrosine phosphatase enzyme that regulates the phosphorylation of the mitogen-activated protein kinase signaling pathway, a central mediator of a diversity of biological responses. It has been suggested that vaccinia H1-related phosphatase can act as a tumor suppressor or tumor-promoting phosphatase in different cancers. Furthermore, emerging evidence suggests that this enzyme has many other biological functions, such as roles in immune responses, thrombosis, hemostasis, angiogenesis, and genomic stability, and this broad spectrum of vaccinia H1-related phosphatase activity is likely the result of its diversity of substrates. Hence, fully identifying and characterizing these substrate-phosphatase interactions will facilitate the identification of pharmacological inhibitors of vaccinia H1-related phosphatase that can be evaluated in clinical trials. In this review, we describe the biological processes mediated by vaccinia H1-related phosphatase, especially those related to genomic stability. We also focus on validated substrates and signaling circuitry with clinical relevance in human diseases, particularly oncogenesis.


Assuntos
Fosfatase 3 de Especificidade Dupla/fisiologia , Neoplasias/enzimologia , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neoplasias/mortalidade , Transdução de Sinais , Análise de Sobrevida
9.
Clinics ; 73(supl.1): e466s, 2018. graf
Artigo em Inglês | LILACS | ID: biblio-952823

RESUMO

Protein tyrosine phosphatases have long been considered key regulators of biological processes and are therefore implicated in the origins of various human diseases. Heterozygosity, mutations, deletions, and the complete loss of some of these enzymes have been reported to cause neurodegenerative diseases, autoimmune syndromes, genetic disorders, metabolic diseases, cancers, and many other physiological imbalances. Vaccinia H1-related phosphatase, also known as dual-specificity phosphatase 3, is a protein tyrosine phosphatase enzyme that regulates the phosphorylation of the mitogen-activated protein kinase signaling pathway, a central mediator of a diversity of biological responses. It has been suggested that vaccinia H1-related phosphatase can act as a tumor suppressor or tumor-promoting phosphatase in different cancers. Furthermore, emerging evidence suggests that this enzyme has many other biological functions, such as roles in immune responses, thrombosis, hemostasis, angiogenesis, and genomic stability, and this broad spectrum of vaccinia H1-related phosphatase activity is likely the result of its diversity of substrates. Hence, fully identifying and characterizing these substrate-phosphatase interactions will facilitate the identification of pharmacological inhibitors of vaccinia H1-related phosphatase that can be evaluated in clinical trials. In this review, we describe the biological processes mediated by vaccinia H1-related phosphatase, especially those related to genomic stability. We also focus on validated substrates and signaling circuitry with clinical relevance in human diseases, particularly oncogenesis.


Assuntos
Humanos , Fosfatase 3 de Especificidade Dupla/fisiologia , Neoplasias/enzimologia , Transdução de Sinais , Análise de Sobrevida , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neoplasias/mortalidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA