Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Cell ; 185(16): 2879-2898.e24, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35931020

RESUMO

Human gut commensals are increasingly suggested to impact non-communicable diseases, such as inflammatory bowel diseases (IBD), yet their targeted suppression remains a daunting unmet challenge. In four geographically distinct IBD cohorts (n = 537), we identify a clade of Klebsiella pneumoniae (Kp) strains, featuring a unique antibiotics resistance and mobilome signature, to be strongly associated with disease exacerbation and severity. Transfer of clinical IBD-associated Kp strains into colitis-prone, germ-free, and colonized mice enhances intestinal inflammation. Stepwise generation of a lytic five-phage combination, targeting sensitive and resistant IBD-associated Kp clade members through distinct mechanisms, enables effective Kp suppression in colitis-prone mice, driving an attenuated inflammation and disease severity. Proof-of-concept assessment of Kp-targeting phages in an artificial human gut and in healthy volunteers demonstrates gastric acid-dependent phage resilience, safety, and viability in the lower gut. Collectively, we demonstrate the feasibility of orally administered combination phage therapy in avoiding resistance, while effectively inhibiting non-communicable disease-contributing pathobionts.


Assuntos
Bacteriófagos , Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Animais , Colite/terapia , Humanos , Inflamação/terapia , Doenças Inflamatórias Intestinais/terapia , Klebsiella pneumoniae , Camundongos
2.
Bioinformatics ; 38(12): 3288-3290, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35551337

RESUMO

SUMMARY: Next-Generation Sequencing is widely used as a tool for identifying and quantifying microorganisms pooled together in either natural or designed samples. However, a prominent obstacle is achieving correct quantification when the pooled microbes are genetically related. In such cases, the outcome mostly depends on the method used for assigning reads to the individual targets. To address this challenge, we have developed Exodus-a reference-based Python algorithm for quantification of genomes, including those that are highly similar, when they are sequenced together in a single mix. To test Exodus' performance, we generated both empirical and in silico next-generation sequencing data of mixed genomes. When applying Exodus to these data, we observed median error rates varying between 0% and 0.21% as a function of the complexity of the mix. Importantly, no false negatives were recorded, demonstrating that Exodus' likelihood of missing an existing genome is very low, even if the genome's relative abundance is low and similar genomes are present in the same mix. Taken together, these data position Exodus as a reliable tool for identifying and quantifying genomes in mixed samples. Exodus is open source and free to use at: https://github.com/ilyavs/exodus. AVAILABILITY AND IMPLEMENTATION: Exodus is implemented in Python within a Snakemake framework. It is available on GitHub alongside a docker containing the required dependencies: https://github.com/ilyavs/exodus. The data underlying this article will be shared on reasonable request to the corresponding author. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Software , Genoma , Algoritmos , Projetos de Pesquisa
3.
Nat Immunol ; 12(3): 239-46, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21278735

RESUMO

Colonic homeostasis entails epithelium-lymphocyte cooperation, yet many participants in this process are unknown. We show here that epithelial microRNAs mediate the mucosa-immune system crosstalk necessary for mounting protective T helper type 2 (T(H)2) responses. Abolishing the induction of microRNA by gut-specific deletion of Dicer1 (Dicer1(Δgut)), which encodes an enzyme involved in microRNA biogenesis, deprived goblet cells of RELMß, a key T(H)2 antiparasitic cytokine; this predisposed the host to parasite infection. Infection of Dicer1(Δgut) mice with helminths favored a futile T(H)1 response with hallmarks of inflammatory bowel disease. Interleukin 13 (IL-13) induced the microRNA miR-375, which regulates the expression of TSLP, a T(H)2-facilitating epithelial cytokine; this indicated a T(H)2-amplification loop. We found that miR-375 was required for RELMß expression in vivo; miR-375-deficient mice had significantly less intestinal RELMß, which possibly explains the greater susceptibility of Dicer1(Δgut) mice to parasites. Our findings indicate that epithelial microRNAs are key regulators of gut homeostasis and mucosal immunity.


Assuntos
Imunidade nas Mucosas/imunologia , MicroRNAs/imunologia , Linfócitos T/imunologia , Animais , Comunicação Celular , Epitélio/imunologia , Trato Gastrointestinal/imunologia , Células HT29 , Humanos , Imuno-Histoquímica , Interleucina-13/metabolismo , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
4.
J Cell Mol Med ; 24(12): 6586-6595, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32400052

RESUMO

The serum or plasma microRNA (miRNA) molecules have been suggested as diagnostic and prognostic biomarkers, in various pathological conditions. However, these molecules are also found in different serum fractions, such as exosomes and Argonaute (Ago) protein complexes. Ago1 is the predominant Ago protein expressed in heart tissue. The objective of the study was to examine the hypothesis that Ago1-associated miRNAs may be more relevant to cardiac disease and heart failure compared with the serum. In total, 84 miRNA molecules were screened for their expression in the whole serum, exosomes and Ago1, and Ago2 complexes. Ago1-bound miR-222-3p, miR-497-5p and miR-21-5p were significantly higher, and let-7a-5p was significantly lower in HF patients compared with healthy controls, whereas no such difference was observed for those markers in the serum samples among the groups. A combination of these 4 miRNAs into an Ago1-HF score provided a ROC curve with an AUC of 1, demonstrating clear discrimination between heart failure patients and healthy individuals. Ago1 fraction might be a better and more specific platform for identifying HF-related miRNAs compared with the whole serum.


Assuntos
Proteínas Argonautas/genética , Fatores de Iniciação em Eucariotos/genética , Perfilação da Expressão Gênica , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/genética , MicroRNAs/sangue , Proteínas Argonautas/metabolismo , Análise por Conglomerados , Fatores de Iniciação em Eucariotos/metabolismo , Regulação da Expressão Gênica , Humanos
5.
Diabetologia ; 62(9): 1653-1666, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31187215

RESUMO

AIMS/HYPOTHESIS: Adult beta cells in the pancreas are the sole source of insulin in the body. Beta cell loss or increased demand for insulin impose metabolic challenges because adult beta cells are generally quiescent and infrequently re-enter the cell division cycle. The aim of this study is to test the hypothesis that a family of proto-oncogene microRNAs that includes miR-17-92 and miR-106b-25 clusters regulates beta cell proliferation or function in the adult endocrine pancreas. METHODS: To elucidate the role of miR-17-92 and miR-106b-25 clusters in beta cells, we used a conditional miR-17-92/miR-106b-25 knockout mouse model. We employed metabolic assays in vivo and ex vivo, together with advanced microscopy of pancreatic sections, bioinformatics, mass spectrometry and next generation sequencing, to examine potential targets of miR-17-92/miR-106b-25, by which they might regulate beta cell proliferation and function. RESULTS: We demonstrate that miR-17-92/miR-106b-25 regulate the adult beta cell mitotic checkpoint and that miR-17-92/miR-106b-25 deficiency results in reduction in beta cell mass in vivo. Furthermore, we reveal a critical role for miR-17-92/miR-106b-25 in glucose homeostasis and in controlling insulin secretion. We identify protein kinase A as a new relevant molecular pathway downstream of miR-17-92/miR-106b-25 in control of adult beta cell division and glucose homeostasis. CONCLUSIONS/INTERPRETATION: The study contributes to the understanding of proto-oncogene miRNAs in the normal, untransformed endocrine pancreas and illustrates new genetic means for regulation of beta cell mitosis and function by non-coding RNAs. DATA AVAILABILITY: Sequencing data that support the findings of this study have been deposited in GEO with the accession code GSE126516.


Assuntos
Secreção de Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , MicroRNAs/metabolismo , Animais , Células Cultivadas , Feminino , Citometria de Fluxo , Secreção de Insulina/genética , Masculino , Espectrometria de Massas , Camundongos , MicroRNAs/genética , Mitose/genética , Mitose/fisiologia , Pâncreas/metabolismo
6.
J Ren Nutr ; 28(6): 380-392, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30348259

RESUMO

OBJECTIVE: To better define the prevalence of protein-energy wasting (PEW) in kidney disease is poorly defined. METHODS: We performed a meta-analysis of PEW prevalence from contemporary studies including more than 50 subjects with kidney disease, published during 2000-2014 and reporting on PEW prevalence by subjective global assessment or malnutrition-inflammation score. Data were reviewed throughout different strata: (1) acute kidney injury (AKI), (2) pediatric chronic kidney disease (CKD), (3) nondialyzed CKD 3-5, (4) maintenance dialysis, and (5) subjects undergoing kidney transplantation (Tx). Sample size, period of publication, reporting quality, methods, dialysis technique, country, geographical region, and gross national income were a priori considered factors influencing between-study variability. RESULTS: Two studies including 189 AKI patients reported a PEW prevalence of 60% and 82%. Five studies including 1776 patients with CKD stages 3-5 reported PEW prevalence ranging from 11% to 54%. Finally, 90 studies from 34 countries including 16,434 patients on maintenance dialysis were identified. The 25th-75th percentiles range in PEW prevalence among dialysis studies was 28-54%. Large variation in PEW prevalence across studies remained even when accounting for moderators. Mixed-effects meta-regression identified geographical region as the only significant moderator explaining 23% of the observed data heterogeneity. Finally, two studies including 1067 Tx patients reported a PEW prevalence of 28% and 52%, and no studies recruiting pediatric CKD patients were identified. CONCLUSION: By providing evidence-based ranges of PEW prevalence, we conclude that PEW is a common phenomenon across the spectrum of AKI and CKD. This, together with the well-documented impact of PEW on patient outcomes, justifies the need for increased medical attention.


Assuntos
Desnutrição Proteico-Calórica/epidemiologia , Insuficiência Renal Crônica/epidemiologia , Comorbidade , Humanos , Internacionalidade , Estudos Observacionais como Assunto , Prevalência , Sociedades Médicas
7.
Nanomedicine ; 12(7): 2201-2214, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27262933

RESUMO

Glioblastoma multiforme (GBM) is the most common and aggressive primary neoplasm of the brain. Poor prognosis is mainly attributed to tumor heterogeneity, invasiveness, and drug resistance. microRNA-based therapeutics represent a promising approach due to their ability to inhibit multiple targets. In this work, we aim to restore the oncosuppressor activity of microRNA-34a (miR-34a) in GBM. We developed a cationic carrier system, dendritic polyglycerolamine (dPG-NH2), which remarkably improves miRNA stability, intracellular trafficking, and activity. dPG-NH2 carrying mature miR-34a targets C-MET, CDK6, Notch1 and BCL-2, consequently inhibiting cell cycle progression, proliferation and migration of GBM cells. Following complexation with dPG-NH2, miRNA is stable in plasma and able to cross the blood-brain barrier. We further show inhibition of tumor growth following treatment with dPG-NH2-miR-34a in a human glioblastoma mouse model. We hereby present a promising technology using dPG-NH2-miR-34a polyplex for brain-tumor treatment, with enhanced efficacy and no apparent signs of toxicity.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , MicroRNAs/farmacologia , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Portadores de Fármacos , Glioblastoma , Glicerol , Humanos , Polímeros
8.
EMBO J ; 30(5): 835-45, 2011 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-21285947

RESUMO

MicroRNAs (miRNAs) were shown to be important for pancreas development, yet their roles in differentiated ß-cells remain unclear. Here, we show that miRNA inactivation in ß-cells of adult mice results in a striking diabetic phenotype. While islet architecture is intact and differentiation markers are maintained, Dicer1-deficient ß-cells show a dramatic decrease in insulin content and insulin mRNA. As a consequence of the change in insulin content, the animals become diabetic. We provide evidence for involvement of a set of miRNAs in regulating insulin synthesis. The specific knockdown of miR-24, miR-26, miR-182 or miR-148 in cultured ß-cells or in isolated primary islets downregulates insulin promoter activity and insulin mRNA levels. Further, miRNA-dependent regulation of insulin expression is associated with upregulation of transcriptional repressors, including Bhlhe22 and Sox6. Thus, miRNAs in the adult pancreas act in a new network that reinforces insulin expression by reducing the expression of insulin transcriptional repressors.


Assuntos
RNA Helicases DEAD-box/fisiologia , Endorribonucleases/fisiologia , Células Secretoras de Insulina/metabolismo , Insulina/genética , Insulina/metabolismo , MicroRNAs/fisiologia , Proteínas Repressoras/metabolismo , Transcrição Gênica , Animais , Western Blotting , Diferenciação Celular , Células Cultivadas , Regulação para Baixo , Intolerância à Glucose , Humanos , Técnicas Imunoenzimáticas , Células Secretoras de Insulina/citologia , Integrases/metabolismo , Luciferases/metabolismo , Camundongos , Camundongos Knockout , MicroRNAs/antagonistas & inibidores , RNA Mensageiro/genética , Proteínas Repressoras/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribonuclease III
9.
Development ; 139(16): 3021-31, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22764048

RESUMO

Genome-encoded microRNAs (miRNAs) provide a post-transcriptional regulatory layer that is important for pancreas development. However, how specific miRNAs are intertwined into the transcriptional network, which controls endocrine differentiation, is not well understood. Here, we show that microRNA-7 (miR-7) is specifically expressed in endocrine precursors and in mature endocrine cells. We further demonstrate that Pax6 is an important target of miR-7. miR-7 overexpression in developing pancreas explants or in transgenic mice led to Pax6 downregulation and inhibition of α- and ß-cell differentiation, resembling the molecular changes caused by haploinsufficient expression of Pax6. Accordingly, miR-7 knockdown resulted in Pax6 upregulation and promoted α- and ß-cell differentiation. Furthermore, Pax6 downregulation reversed the effect of miR-7 knockdown on insulin promoter activity. These data suggest a novel miR-7-based circuit that ensures precise control of endocrine cell differentiation.


Assuntos
Ilhotas Pancreáticas/embriologia , Ilhotas Pancreáticas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Pâncreas/embriologia , Pâncreas/metabolismo , Animais , Sequência de Bases , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Proteínas do Olho/antagonistas & inibidores , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Haploinsuficiência , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Insulina/genética , Ilhotas Pancreáticas/citologia , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , MicroRNAs/antagonistas & inibidores , Modelos Biológicos , Técnicas de Cultura de Órgãos , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/antagonistas & inibidores , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Pâncreas/citologia , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Regulação para Cima
10.
Bone Res ; 11(1): 16, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918542

RESUMO

Paget's disease (PDB) is a late-onset bone remodeling disorder with a broad spectrum of symptoms and complications. One of the most aggressive forms is caused by the P937R mutation in the ZNF687 gene. Although the genetic involvement of ZNF687 in PDB has been extensively studied, the molecular mechanisms underlying this association remain unclear. Here, we describe the first Zfp687 knock-in mouse model and demonstrate that the mutation recapitulates the PDB phenotype, resulting in severely altered bone remodeling. Through microcomputed tomography analysis, we observed that 8-month-old mutant mice showed a mainly osteolytic phase, with a significant decrease in the trabecular bone volume affecting the femurs and the vertebrae. Conversely, osteoblast activity was deregulated, producing disorganized bone. Notably, this phenotype became pervasive in 16-month-old mice, where osteoblast function overtook bone resorption, as highlighted by the presence of woven bone in histological analyses, consistent with the PDB phenotype. Furthermore, we detected osteophytes and intervertebral disc degeneration, outlining for the first time the link between osteoarthritis and PDB in a PDB mouse model. RNA sequencing of wild-type and Zfp687 knockout RAW264.7 cells identified a set of genes involved in osteoclastogenesis potentially regulated by Zfp687, e.g., Tspan7, Cpe, Vegfc, and Ggt1, confirming its role in this process. Strikingly, in this mouse model, the mutation was also associated with a high penetrance of hepatocellular carcinomas. Thus, this study established an essential role of Zfp687 in the regulation of bone remodeling, offering the potential to therapeutically treat PDB, and underlines the oncogenic potential of ZNF687.

11.
Commun Biol ; 6(1): 9, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36599901

RESUMO

Profilin 1-encoded by PFN1-is a small actin-binding protein with a tumour suppressive role in various adenocarcinomas and pagetic osteosarcomas. However, its contribution to tumour development is not fully understood. Using fix and live cell imaging, we report that Profilin 1 inactivation results in multiple mitotic defects, manifested prominently by anaphase bridges, multipolar spindles, misaligned and lagging chromosomes, and cytokinesis failures. Accordingly, next-generation sequencing technologies highlighted that Profilin 1 knock-out cells display extensive copy-number alterations, which are associated with complex genome rearrangements and chromothripsis events in primary pagetic osteosarcomas with Profilin 1 inactivation. Mechanistically, we show that Profilin 1 is recruited to the spindle midzone at anaphase, and its deficiency reduces the supply of actin filaments to the cleavage furrow during cytokinesis. The mitotic defects are also observed in mouse embryonic fibroblasts and mesenchymal cells deriving from a newly generated knock-in mouse model harbouring a Pfn1 loss-of-function mutation. Furthermore, nuclear atypia is also detected in histological sections of mutant femurs. Thus, our results indicate that Profilin 1 has a role in regulating cell division, and its inactivation triggers mitotic defects, one of the major mechanisms through which tumour cells acquire chromosomal instability.


Assuntos
Fibroblastos , Instabilidade Genômica , Profilinas , Animais , Humanos , Camundongos , Anáfase/genética , Citocinese/genética , Instabilidade Genômica/genética , Mitose/genética , Profilinas/genética , Profilinas/metabolismo , Osteossarcoma/genética , Osteossarcoma/metabolismo
12.
Nat Commun ; 14(1): 3261, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277351

RESUMO

Primary sclerosing cholangitis (PSC) is characterized by progressive biliary inflammation and fibrosis. Although gut commensals are associated with PSC, their causative roles and therapeutic strategies remain elusive. Here we detect abundant Klebsiella pneumoniae (Kp) and Enterococcus gallinarum in fecal samples from 45 PSC patients, regardless of intestinal complications. Carriers of both pathogens exhibit high disease activity and poor clinical outcomes. Colonization of PSC-derived Kp in specific pathogen-free (SPF) hepatobiliary injury-prone mice enhances hepatic Th17 cell responses and exacerbates liver injury through bacterial translocation to mesenteric lymph nodes. We developed a lytic phage cocktail that targets PSC-derived Kp with a sustained suppressive effect in vitro. Oral administration of the phage cocktail lowers Kp levels in Kp-colonized germ-free mice and SPF mice, without off-target dysbiosis. Furthermore, we demonstrate that oral and intravenous phage administration successfully suppresses Kp levels and attenuates liver inflammation and disease severity in hepatobiliary injury-prone SPF mice. These results collectively suggest that using a lytic phage cocktail shows promise for targeting Kp in PSC.


Assuntos
Colangite Esclerosante , Terapia por Fagos , Animais , Camundongos , Colangite Esclerosante/terapia , Klebsiella pneumoniae , Fígado/patologia , Inflamação/patologia
13.
Front Cell Dev Biol ; 10: 886305, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646939

RESUMO

Osteoclasts are highly specialized cells of the bone, with a unique apparatus responsible for resorption in the process of bone remodeling. They are derived from differentiation and fusion of hematopoietic precursors, committed to form mature osteoclasts in response to finely regulated stimuli produced by bone marrow-derived cells belonging to the stromal lineage. Despite a highly specific function confined to bone degradation, emerging evidence supports their relevant implication in bone tumors and metastases. In this review, we summarize the physiological role of osteoclasts and then focus our attention on their involvement in skeletal tumors, both primary and metastatic. We highlight how osteoclast-mediated bone erosion confers increased aggressiveness to primary tumors, even those with benign features. We also outline how breast and pancreas cancer cells promote osteoclastogenesis to fuel their metastatic process to the bone. Furthermore, we emphasize the role of osteoclasts in reactivating dormant cancer cells within the bone marrow niches for manifestation of overt metastases, even decades after homing of latent disseminated cells. Finally, we point out the importance of counteracting tumor progression and dissemination through pharmacological treatments based on a better understanding of molecular mechanisms underlying osteoclast lytic activity and their recruitment from cancer cells.

14.
Pharmaceuticals (Basel) ; 14(4)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918942

RESUMO

Bacteriophages ("phages") infect and multiply within specific bacterial strains, causing lysis of their target. Due to the specific nature of these interactions, phages allow a high-precision approach for therapy which can also be exploited for the detection of phage-sensitive pathogens associated with chronic diseases due to gut microbiome imbalance. As rapid phage-mediated detection assays becoming standard-of-care diagnostic tools, they will advance the more widespread application of phage therapy in a precision approach. Using a conventional method and a new cloning approach to develop luminescent phages, we engineered two phages that specifically detect a disease-associated microbial strain. We performed phage sensitivity assays in liquid culture and in fecal matrices and tested the stability of spiked fecal samples stored under different conditions. Different reporter gene structures and genome insertion sites were required to successfully develop the two nluc-reporter phages. The reporter phages detected spiked bacteria in five fecal samples with high specificity. Fecal samples stored under different conditions for up to 30 days did not display major losses in reporter-phage-based detection. Luminescent phage-based diagnostics can provide a rapid co-diagnostic tool to guide the growing field of phage therapy, particularly for a precision-based approach to chronic diseases treatment.

15.
J Clin Pathol ; 70(6): 500-507, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27798083

RESUMO

AIMS: The distinction between benign and malignant thyroid nodules has important therapeutic implications. Our objective was to develop an assay that could classify indeterminate thyroid nodules as benign or suspicious, using routinely prepared fine needle aspirate (FNA) cytology smears. METHODS: A training set of 375 FNA smears was used to develop the microRNA-based assay, which was validated using a blinded, multicentre, retrospective cohort of 201 smears. Final diagnosis of the validation samples was determined based on corresponding surgical specimens, reviewed by the contributing institute pathologist and two independent pathologists. Validation samples were from adult patients (≥18 years) with nodule size >0.5 cm, and a final diagnosis confirmed by at least one of the two blinded, independent pathologists. The developed assay, RosettaGX Reveal, differentiates benign from malignant thyroid nodules, using quantitative RT-PCR. RESULTS: Test performance on the 189 samples that passed quality control: negative predictive value: 91% (95% CI 84% to 96%); sensitivity: 85% (CI 74% to 93%); specificity: 72% (CI 63% to 79%). Performance for cases in which all three reviewing pathologists were in agreement regarding the final diagnosis (n=150): negative predictive value: 99% (CI 94% to 100%); sensitivity: 98% (CI 87% to 100%); specificity: 78% (CI 69% to 85%). CONCLUSIONS: A novel assay utilising microRNA expression in cytology smears was developed. The assay distinguishes benign from malignant thyroid nodules using a single FNA stained smear, and does not require fresh tissue or special collection and shipment conditions. This assay offers a valuable tool for the preoperative classification of thyroid samples with indeterminate cytology.


Assuntos
MicroRNAs/metabolismo , Neoplasias da Glândula Tireoide/diagnóstico , Nódulo da Glândula Tireoide/diagnóstico , Biópsia por Agulha Fina , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Valor Preditivo dos Testes
16.
Brain Res Dev Brain Res ; 157(1): 65-73, 2005 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-15939086

RESUMO

The actions of 5-HT1A receptors on cell proliferation in the rat neonatal dentate gyrus are unknown. We injected a 5-HT1A receptor agonist (ipsapirone) or antagonist (Way 100635) 1 h before injections of BrdU in neonates of both genders between days 2-4, a peak time of dentate gyrus granule cell proliferation. The BrdU immunoreactive (IR) nuclei in the granule cell layer and subgranular zone were examined after 2 weeks. The BrdU-IR nuclear staining patterns were classified as being either diffuse (homogenous dark BrdU-staining throughout the nucleus) or punctate (multiple distinct small stained spots within the nucleus). Most BrdU-labeled nuclei with a diffuse pattern were seen in the subgranular zone while the punctate pattern nuclei were seen within the granular cell layer of the dentate gyrus. 5-HT1A antagonist showed no overall change in absolute number or pattern of labeled nuclei compared to control animals. After a 5-HT1A agonist, there was also no differences in the total number of BrdU-IR nuclei (punctate and diffuse pattern). However, in both genders, the proportion of the BrdU-labeled nuclei showing a punctate compared to diffuse pattern increased: 33% in females and 18% in males. In females, the 5-HT1A receptor agonist increased the number of nuclei showing a punctate pattern by 41%, while in males the 5-HT1A receptor agonist decreased the number of nuclei showing a diffuse pattern by 29%. These results indicate gender-specific 5-HT1A receptor action on the state of nuclear DNA in the cells of the dentate gyrus, without increasing the total number of BrdU-labeled nuclei.


Assuntos
Bromodesoxiuridina/farmacologia , Giro Denteado/crescimento & desenvolvimento , Giro Denteado/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Receptor 5-HT1A de Serotonina/metabolismo , Caracteres Sexuais , Análise de Variância , Animais , Animais Recém-Nascidos , Bromodesoxiuridina/metabolismo , Contagem de Células/métodos , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Imuno-Histoquímica/métodos , Masculino , Piperazinas/farmacologia , Gravidez , Piridinas/farmacologia , Pirimidinas/farmacologia , Ratos , Antagonistas da Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia
17.
PLoS One ; 10(4): e0122108, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25875172

RESUMO

In-vitro expansion of ß cells from adult human pancreatic islets could provide abundant cells for cell replacement therapy of diabetes. However, proliferation of ß-cell-derived (BCD) cells is associated with dedifferentiation. Here we analyzed changes in microRNAs (miRNAs) during BCD cell dedifferentiation and identified miR-375 as one of the miRNAs greatly downregulated. We hypothesized that restoration of miR-375 expression in expanded BCD cells may contribute to their redifferentiation. Our findings demonstrate that overexpression of miR-375 alone leads to activation of ß-cell gene expression, reduced cell proliferation, and a switch from N-cadherin to E-cadherin expression, which characterizes mesenchymal-epithelial transition. These effects, which are reproducible in cells derived from multiple human donors, are likely mediated by repression of PDPK1 transcripts and indirect downregulation of GSK3 activity. These findings support an important role of miR-375 in regulation of human ß-cell phenotype, and suggest that miR-375 upregulation may facilitate the generation of functional insulin-producing cells following ex-vivo expansion of human islet cells.


Assuntos
Diferenciação Celular/genética , Terapia Baseada em Transplante de Células e Tecidos , Diabetes Mellitus/genética , Células Secretoras de Insulina/metabolismo , MicroRNAs/genética , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/biossíntese , Adulto , Caderinas/biossíntese , Proliferação de Células/genética , Diabetes Mellitus/terapia , Transição Epitelial-Mesenquimal/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Técnicas In Vitro , Insulina/metabolismo , Células Secretoras de Insulina/transplante , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , MicroRNAs/metabolismo
18.
Exp Diabetes Res ; 2012: 695214, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22675342

RESUMO

Genome-encoded microRNAs (miRNAs) provide a posttranscriptional regulatory layer, which is important for pancreas development. Differentiation of endocrine cells is controlled by a network of pancreatic transcription factors including Ngn3 and NeuroD/Beta2. However, how specific miRNAs are intertwined into this transcriptional network is not well understood. Here, we characterize the regulation of microRNA-7 (miR-7) by endocrine-specific transcription factors. Our data reveal that three independent miR-7 genes are coexpressed in the pancreas. We have identified conserved blocks upstream of pre-miR-7a-2 and pre-miR-7b and demonstrated by functional assays that they possess promoter activity, which is increased by the expression of NeuroD/Beta2. These data suggest that the endocrine specificity of miR-7 expression is governed by transcriptional mechanisms and involves members of the pancreatic endocrine network of transcription factors.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/biossíntese , MicroRNAs/genética , Pâncreas/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Cultivadas , DNA Complementar/metabolismo , Células HEK293 , Humanos , Modelos Genéticos , Proteínas do Tecido Nervoso/metabolismo , Regiões Promotoras Genéticas , Processamento Pós-Transcricional do RNA
19.
Exp Diabetes Res ; 2012: 470302, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22991506

RESUMO

microRNAs (miRNAs) play important roles in pancreas development and in regulation of insulin expression in the adult. Here we show that loss of miRNAs activity in beta-cells during embryonic development results in lower beta-cell mass and in impaired glucose tolerance. Dicer1-null cells initially constitute a significant portion of the total beta-cell population. However, during postnatal development, Dicer1-null cells are depleted. Furthermore, wild-type beta cells are repopulating the islets in complex compensatory dynamics. Because loss of Dicer1 is also associated with changes in the distribution of membranous E-cadherin, we hypothesized that E-cadherin activity may play a role in beta cell survival or islet architecture. However, genetic loss of E-cadherin function does not impair islet architecture, suggesting that miRNAs likely function through other or redundant effectors in the endocrine pancreas.


Assuntos
RNA Helicases DEAD-box/metabolismo , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , MicroRNAs/metabolismo , Ribonuclease III/metabolismo , Animais , Apoptose , Glicemia/análise , Caderinas/genética , Caderinas/metabolismo , Cruzamentos Genéticos , RNA Helicases DEAD-box/genética , Regulação da Expressão Gênica no Desenvolvimento , Intolerância à Glucose/sangue , Heterozigoto , Insulina/sangue , Insulina/metabolismo , Secreção de Insulina , Integrases/genética , Integrases/metabolismo , Ilhotas Pancreáticas/crescimento & desenvolvimento , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mutação , Organogênese , Ribonuclease III/genética
20.
Methods Mol Biol ; 732: 89-97, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21431707

RESUMO

Here, we detail a protocol to design and introduce sequence-specific cholesterol-conjugated antisense oligonucleotides into mouse organ culture. We review design principles for "antagomirs", antisense oligos with a cholesterol-moiety modification at the 3', and present an optimized method to apply them onto 3D cultured embryonic pancreas. The method offers an approach to study the developmental functions of individual miRNAs and to evaluate miRNA targets, which is significantly faster and simpler than comparable genetics-based approaches.


Assuntos
MicroRNAs/genética , Oligonucleotídeos Antissenso/genética , Técnicas de Cultura de Órgãos , Pâncreas , Animais , Colesterol , Técnicas de Silenciamento de Genes , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA