Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 82(24): 4681-4699.e8, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36435176

RESUMO

Long introns with short exons in vertebrate genes are thought to require spliceosome assembly across exons (exon definition), rather than introns, thereby requiring transcription of an exon to splice an upstream intron. Here, we developed CoLa-seq (co-transcriptional lariat sequencing) to investigate the timing and determinants of co-transcriptional splicing genome wide. Unexpectedly, 90% of all introns, including long introns, can splice before transcription of a downstream exon, indicating that exon definition is not obligatory for most human introns. Still, splicing timing varies dramatically across introns, and various genetic elements determine this variation. Strong U2AF2 binding to the polypyrimidine tract predicts early splicing, explaining exon definition-independent splicing. Together, our findings question the essentiality of exon definition and reveal features beyond intron and exon length that are determinative for splicing timing.


Assuntos
Processamento Alternativo , Splicing de RNA , Humanos , Sequência de Bases , Íntrons/genética , Éxons/genética
2.
Cell ; 145(5): 692-706, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21596426

RESUMO

Little is known about how combinations of histone marks are interpreted at the level of nucleosomes. The second PHD finger of human BPTF is known to specifically recognize histone H3 when methylated on lysine 4 (H3K4me2/3). Here, we examine how additional heterotypic modifications influence BPTF binding. Using peptide surrogates, three acetyllysine ligands are indentified for a PHD-adjacent bromodomain in BPTF via systematic screening and biophysical characterization. Although the bromodomain displays limited discrimination among the three possible acetyllysines at the peptide level, marked selectivity is observed for only one of these sites, H4K16ac, in combination with H3K4me3 at the mononucleosome level. In support, these two histone marks constitute a unique trans-histone modification pattern that unambiguously resides within a single nucleosomal unit in human cells, and this module colocalizes with these marks in the genome. Together, our data call attention to nucleosomal patterning of covalent marks in dictating critical chromatin associations.


Assuntos
Antígenos Nucleares/metabolismo , Histonas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Nucleossomos/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Animais , Núcleo Celular/metabolismo , Cromatina/química , Cromatina/metabolismo , Código das Histonas , Histonas/química , Humanos , Modelos Moleculares , Nucleossomos/química , Peptídeos/química , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Xenopus
3.
Mol Cell ; 72(1): 162-177.e7, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30244833

RESUMO

Histone post-translational modifications (PTMs) are important genomic regulators often studied by chromatin immunoprecipitation (ChIP), whereby their locations and relative abundance are inferred by antibody capture of nucleosomes and associated DNA. However, the specificity of antibodies within these experiments has not been systematically studied. Here, we use histone peptide arrays and internally calibrated ChIP (ICeChIP) to characterize 52 commercial antibodies purported to distinguish the H3K4 methylforms (me1, me2, and me3, with each ascribed distinct biological functions). We find that many widely used antibodies poorly distinguish the methylforms and that high- and low-specificity reagents can yield dramatically different biological interpretations, resulting in substantial divergence from the literature for numerous H3K4 methylform paradigms. Using ICeChIP, we also discern quantitative relationships between enhancer H3K4 methylation and promoter transcriptional output and can measure global PTM abundance changes. Our results illustrate how poor antibody specificity contributes to the "reproducibility crisis," demonstrating the need for rigorous, platform-appropriate validation.


Assuntos
Anticorpos/genética , Imunoprecipitação da Cromatina/métodos , Heterocromatina/genética , Histonas/genética , Anticorpos/química , Anticorpos/imunologia , Especificidade de Anticorpos , Heterocromatina/química , Heterocromatina/imunologia , Código das Histonas/genética , Histonas/química , Histonas/imunologia , Humanos , Metilação , Nucleossomos/genética , Regiões Promotoras Genéticas/genética , Processamento de Proteína Pós-Traducional/genética
4.
PLoS Comput Biol ; 19(10): e1011576, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37883581

RESUMO

Long-read RNA sequencing has arisen as a counterpart to short-read sequencing, with the potential to capture full-length isoforms, albeit at the cost of lower depth. Yet this potential is not fully realized due to inherent limitations of current long-read assembly methods and underdeveloped approaches to integrate short-read data. Here, we critically compare the existing methods and develop a new integrative approach to characterize a particularly challenging pool of low-abundance long noncoding RNA (lncRNA) transcripts from short- and long-read sequencing in two distinct cell lines. Our analysis reveals severe limitations in each of the sequencing platforms. For short-read assemblies, coverage declines at transcript termini resulting in ambiguous ends, and uneven low coverage results in segmentation of a single transcript into multiple transcripts. Conversely, long-read sequencing libraries lack depth and strand-of-origin information in cDNA-based methods, culminating in erroneous assembly and quantitation of transcripts. We also discover a cDNA synthesis artifact in long-read datasets that markedly impacts the identity and quantitation of assembled transcripts. Towards remediating these problems, we develop a computational pipeline to "strand" long-read cDNA libraries that rectifies inaccurate mapping and assembly of long-read transcripts. Leveraging the strengths of each platform and our computational stranding, we also present and benchmark a hybrid assembly approach that drastically increases the sensitivity and accuracy of full-length transcript assembly on the correct strand and improves detection of biological features of the transcriptome. When applied to a challenging set of under-annotated and cell-type variable lncRNA, our method resolves the segmentation problem of short-read sequencing and the depth problem of long-read sequencing, resulting in the assembly of coherent transcripts with precise 5' and 3' ends. Our workflow can be applied to existing datasets for superior demarcation of transcript ends and refined isoform structure, which can enable better differential gene expression analyses and molecular manipulations of transcripts.


Assuntos
RNA Longo não Codificante , DNA Complementar/genética , Análise de Sequência de RNA/métodos , Transcriptoma , Biblioteca Gênica , Isoformas de Proteínas/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
5.
Mol Cell ; 58(5): 886-99, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26004229

RESUMO

Chromatin immunoprecipitation (ChIP) serves as a central experimental technique in epigenetics research, yet there are serious drawbacks: it is a relative measurement, which untethered to any external scale obscures fair comparison among experiments; it employs antibody reagents that have differing affinities and specificities for target epitopes that vary in abundance; and it is frequently not reproducible. To address these problems, we developed Internal Standard Calibrated ChIP (ICeChIP), wherein a native chromatin sample is spiked with nucleosomes reconstituted from recombinant and semisynthetic histones on barcoded DNA prior to immunoprecipitation. ICeChIP measures local histone modification densities on a biologically meaningful scale, enabling unbiased trans-experimental comparisons, and reveals unique insight into the nature of bivalent domains. This technology provides in situ assessment of the immunoprecipitation step, accommodating for many experimental pitfalls as well as providing a critical examination of untested assumptions inherent to conventional ChIP.


Assuntos
Imunoprecipitação da Cromatina/normas , Histonas/metabolismo , Nucleossomos/genética , Processamento de Proteína Pós-Traducional , Animais , Calibragem , Linhagem Celular , Drosophila melanogaster , Genoma , Células HEK293 , Humanos , Metilação , Camundongos , Padrões de Referência , Reprodutibilidade dos Testes , Análise de Sequência de DNA
6.
Mol Cell ; 59(3): 502-11, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26212453

RESUMO

Access to high-quality antibodies is a necessity for the study of histones and their posttranslational modifications (PTMs). Here we debut the Histone Antibody Specificity Database (http://www.histoneantibodies.com), an online and expanding resource cataloging the behavior of widely used, commercially available histone antibodies by peptide microarray. This interactive web portal provides a critical resource to the biological research community that routinely uses these antibodies as detection reagents for a wide range of applications.


Assuntos
Anticorpos/metabolismo , Bases de Dados Genéticas , Histonas/metabolismo , Análise Serial de Proteínas/métodos , Especificidade de Anticorpos , Células HeLa , Humanos , Processamento de Proteína Pós-Traducional
7.
PLoS Comput Biol ; 17(4): e1008926, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33872311

RESUMO

Next-generation sequencing (NGS) has transformed molecular biology and contributed to many seminal insights into genomic regulation and function. Apart from whole-genome sequencing, an NGS workflow involves alignment of the sequencing reads to the genome of study, after which the resulting alignments can be used for downstream analyses. However, alignment is complicated by the repetitive sequences; many reads align to more than one genomic locus, with 15-30% of the genome not being uniquely mappable by short-read NGS. This problem is typically addressed by discarding reads that do not uniquely map to the genome, but this practice can lead to systematic distortion of the data. Previous studies that developed methods for handling ambiguously mapped reads were often of limited applicability or were computationally intensive, hindering their broader usage. In this work, we present SmartMap: an algorithm that augments industry-standard aligners to enable usage of ambiguously mapped reads by assigning weights to each alignment with Bayesian analysis of the read distribution and alignment quality. SmartMap is computationally efficient, utilizing far fewer weighting iterations than previously thought necessary to process alignments and, as such, analyzing more than a billion alignments of NGS reads in approximately one hour on a desktop PC. By applying SmartMap to peak-type NGS data, including MNase-seq, ChIP-seq, and ATAC-seq in three organisms, we can increase read depth by up to 53% and increase the mapped proportion of the genome by up to 18% compared to analyses utilizing only uniquely mapped reads. We further show that SmartMap enables the analysis of more than 140,000 repetitive elements that could not be analyzed by traditional ChIP-seq workflows, and we utilize this method to gain insight into the epigenetic regulation of different classes of repetitive elements. These data emphasize both the dangers of discarding ambiguously mapped reads and their power for driving biological discovery.


Assuntos
Teorema de Bayes , Mapeamento Cromossômico/estatística & dados numéricos , Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , Imunoprecipitação da Cromatina , DNA/genética , Conjuntos de Dados como Assunto , Genoma Humano , Humanos , Sequências Repetitivas de Ácido Nucleico , Reprodutibilidade dos Testes , Alinhamento de Sequência
8.
PLoS Comput Biol ; 16(2): e1007119, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32040509

RESUMO

Long noncoding RNAs (lncRNAs) localize in the cell nucleus and influence gene expression through a variety of molecular mechanisms. Chromatin-enriched RNAs (cheRNAs) are a unique class of lncRNAs that are tightly bound to chromatin and putatively function to locally cis-activate gene transcription. CheRNAs can be identified by biochemical fractionation of nuclear RNA followed by RNA sequencing, but until now, a rigorous analytic pipeline for nuclear RNA-seq has been lacking. In this study, we survey four computational strategies for nuclear RNA-seq data analysis and develop a new pipeline, Tuxedo-ch, which outperforms other approaches. Tuxedo-ch assembles a more complete transcriptome and identifies cheRNA with higher accuracy than other approaches. We used Tuxedo-ch to analyze benchmark datasets of K562 cells and further characterize the genomic features of intergenic cheRNA (icheRNA) and their similarity to enhancer RNAs (eRNAs). We quantify the transcriptional correlation of icheRNA and adjacent genes and show that icheRNA is more positively associated with neighboring gene expression than eRNA or cap analysis of gene expression (CAGE) signals. We also explore two novel genomic associations of cheRNA, which indicate that cheRNAs may function to promote or repress gene expression in a context-dependent manner. IcheRNA loci with significant levels of H3K9me3 modifications are associated with active enhancers, consistent with the hypothesis that enhancers are derived from ancient mobile elements. In contrast, antisense cheRNA (as-cheRNA) may play a role in local gene repression, possibly through local RNA:DNA:DNA triple-helix formation.


Assuntos
Núcleo Celular/genética , Cromatina/metabolismo , Regulação da Expressão Gênica , RNA/genética , Análise de Sequência de RNA/métodos , Animais , Biologia Computacional , Elementos Facilitadores Genéticos , Humanos , RNA Mensageiro/genética
9.
Nat Chem Biol ; 14(9): 895-900, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30013062

RESUMO

Rapidly determining the biological effect of perturbing a site within a potential drug target could guide drug discovery efforts, but it remains challenging. Here, we describe a facile target validation approach that exploits monobodies, small synthetic binding proteins that can be fully functionally expressed in cells. We developed a potent and selective monobody to WDR5, a core component of the mixed lineage leukemia (MLL) methyltransferase complex. The monobody bound to the MLL interaction site of WDR5, the same binding site for small-molecule inhibitors whose efficacy has been demonstrated in cells but not in animals. As a genetically encoded reagent, the monobody inhibited proliferation of an MLL-AF9 cell line in vitro, suppressed its leukemogenesis and conferred a survival benefit in an in vivo mouse leukemia model. The capacity of this approach to readily bridge biochemical, structural, cellular characterization and tests in animal models may accelerate discovery and validation of druggable sites.


Assuntos
Proteínas de Homeodomínio/antagonistas & inibidores , Oligopeptídeos/farmacologia , Proteínas/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Proteínas de Homeodomínio/genética , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Oligopeptídeos/química , Proteínas/metabolismo , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/genética , Reprodutibilidade dos Testes
10.
Nat Rev Mol Cell Biol ; 8(12): 983-94, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18037899

RESUMO

Various chemical modifications on histones and regions of associated DNA play crucial roles in genome management by binding specific factors that, in turn, serve to alter the structural properties of chromatin. These so-called effector proteins have typically been studied with the biochemist's paring knife--the capacity to recognize specific chromatin modifications has been mapped to an increasing number of domains that frequently appear in the nuclear subset of the proteome, often present in large, multisubunit complexes that bristle with modification-dependent binding potential. We propose that multivalent interactions on a single histone tail and beyond may have a significant, if not dominant, role in chromatin transactions.


Assuntos
Montagem e Desmontagem da Cromatina , Código das Histonas , Animais , Cromatina/metabolismo , Histonas/metabolismo , Humanos
11.
Mol Cell ; 43(1): 5-7, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21726805

RESUMO

In this issue of Molecular Cell, Wu et al. (2011) reveal that ubiquitylation of histone 2B lysine 34 stimulates histone methyltransferase activity on nucleosomes, a finding with implications for the general mechanism by which monoubiquitylation may influence subsequent modification activities.

12.
Proc Natl Acad Sci U S A ; 113(8): 2092-7, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26862167

RESUMO

Antibodies have a well-established modular architecture wherein the antigen-binding site residing in the antigen-binding fragment (Fab or Fv) is an autonomous and complete unit for antigen recognition. Here, we describe antibodies departing from this paradigm. We developed recombinant antibodies to trimethylated lysine residues on histone H3, important epigenetic marks and challenging targets for molecular recognition. Quantitative characterization demonstrated their exquisite specificity and high affinity, and they performed well in common epigenetics applications. Surprisingly, crystal structures and biophysical analyses revealed that two antigen-binding sites of these antibodies form a head-to-head dimer and cooperatively recognize the antigen in the dimer interface. This "antigen clasping" produced an expansive interface where trimethylated Lys bound to an unusually extensive aromatic cage in one Fab and the histone N terminus to a pocket in the other, thereby rationalizing the high specificity. A long-neck antibody format with a long linker between the antigen-binding module and the Fc region facilitated antigen clasping and achieved both high specificity and high potency. Antigen clasping substantially expands the paradigm of antibody-antigen recognition and suggests a strategy for developing extremely specific antibodies.


Assuntos
Anticorpos Monoclonais/química , Antígenos/química , Sítios de Ligação de Anticorpos , Histonas/química , Fragmentos Fab das Imunoglobulinas/química , Anticorpos Monoclonais/genética , Antígenos/genética , Cristalografia por Raios X , Histonas/genética , Humanos , Fragmentos Fab das Imunoglobulinas/genética , Metilação , Estrutura Quaternária de Proteína
13.
Biochemistry ; 57(3): 300-304, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29111671

RESUMO

Methyllysine analogues (MLAs), furnished by aminoethylation of engineered cysteine residues, are widely used surrogates of histone methyllysine and are considered to be effective proxies for studying these epigenetic marks in vitro. Here we report the first structure of a trimethyllysine MLA histone in complex with a protein binding partner, quantify the thermodynamic distinctions between MLAs and their native methyllysine counterparts, and demonstrate that these differences can compromise qualitative interpretations of binding at the nucleosome level. Quantitative measurements with two methyllysine binding protein modules reveal substantial affinity losses for the MLA peptides versus the corresponding native methyllysine species in both cases, although the thermodynamic underpinnings are distinct. MLA and methyllysine adopt distinct conformational geometries when in complex with the BPTF PHD finger, a well-established H3K4me3 binding partner. In this case, an ∼13-fold Kd difference at the peptide level translates to nucleosomal affinities for MLA analogues that fall outside of the detectable range in a pull-down format, whereas the methyllysine species installed by native chemical ligation demonstrates robust binding. Thus, despite their facile production and commercial availability, there is a significant caveat of potentially altered binding affinity when MLAs are used in place of native methyllysine residues.


Assuntos
Antígenos Nucleares/química , Histonas/química , Lisina/análogos & derivados , Proteínas do Tecido Nervoso/química , Dedos de Zinco PHD , Fatores de Transcrição/química , Sequência de Aminoácidos , Humanos , Lisina/química , Ligação Proteica , Processamento de Proteína Pós-Traducional , Termodinâmica
14.
Mol Cell ; 38(6): 853-63, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20541448

RESUMO

MLL1 fusion proteins activate HoxA9 gene expression and cause aggressive leukemias that respond poorly to treatment, but how they recognize and stably bind to HoxA9 is not clearly understood. In a systematic analysis of MLL1 domain recruitment activity, we identified an essential MLL1 recruitment domain that includes the CXXC domain and PHD fingers and is controlled by direct interactions with the PAF elongation complex and H3K4Me2/3. MLL1 fusion proteins lack the PHD fingers and require prebinding of a wild-type MLL1 complex and CXXC domain recognition of DNA for stable HoxA9 association. Together, these results suggest that specific recruitment of MLL1 requires multiple interactions and is a precondition for stable recruitment of MLL1 fusion proteins to HoxA9 in leukemogenesis. Since wild-type MLL1 and oncogenic MLL1 fusion proteins have overlapping yet distinct recruitment mechanisms, this creates a window of opportunity that could be exploited for the development of targeted therapies.


Assuntos
Proteínas de Homeodomínio/metabolismo , Leucemia/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Animais , Linhagem Celular , Loci Gênicos , Histona-Lisina N-Metiltransferase , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas Nucleares/metabolismo , Mutação Puntual , Estrutura Terciária de Proteína , Transporte Proteico , Fatores de Transcrição
15.
Nat Methods ; 10(10): 992-5, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23955773

RESUMO

Variability in the quality of antibodies to histone post-translational modifications (PTMs) is a widely recognized hindrance in epigenetics research. Here, we produced recombinant antibodies to the trimethylated lysine residues of histone H3 with high specificity and affinity and no lot-to-lot variation. These recombinant antibodies performed well in common epigenetics applications, and enabled us to identify positive and negative correlations among histone PTMs.


Assuntos
Anticorpos/imunologia , Afinidade de Anticorpos , Histonas/imunologia , Lisina/imunologia , Processamento de Proteína Pós-Traducional , Animais , Anticorpos/genética , Sítios de Ligação de Anticorpos , Linhagem Celular , Escherichia coli/genética , Histonas/química , Histonas/genética , Humanos , Lisina/química , Lisina/genética , Biblioteca de Peptídeos , Sensibilidade e Especificidade , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia
16.
Chembiochem ; 15(14): 2071-5, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25155436

RESUMO

Considerable mechanistic insight into the function of histone post-translational modifications and the enzymes that install and remove them derives from in vitro experiments with modified histones, often embedded in nucleosomes. We report the first semisyntheses of native-like histone 3 (H3) bearing tri- and dimethyllysines at position 79 and trimethyllysine at position 36, as well as more facile and traceless semisyntheses of K9 and K27 trimethylated species. These semisyntheses are practical on a multi-milligram scale and can also generate H3 with combinations of marks. Each of these modifications has distinct functional consequences, although the pathways by which H3K36me3 and H3K79me2/3 act have not been entirely mapped. To this end, we demonstrated that our semisynthetic histones, when reconstituted into nucleosomes, are valuable affinity reagents for unbiased binding partner discovery and compare them to their methyllysine analogue (MLA) counterparts at the nucleosome level.


Assuntos
Histonas/síntese química , Lisina/análogos & derivados , Sequência de Aminoácidos , Células HeLa , Histonas/química , Histonas/metabolismo , Humanos , Lisina/química , Lisina/metabolismo , Metilação , Dados de Sequência Molecular , Nucleossomos/química , Nucleossomos/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional
17.
Nat Struct Mol Biol ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448574

RESUMO

JADE is a core subunit of the HBO1 acetyltransferase complex that regulates developmental and epigenetic programs and promotes gene transcription. Here we describe the mechanism by which JADE facilitates recruitment of the HBO1 complex to chromatin and mediates its enzymatic activity. Structural, genomic and complex assembly in vivo studies show that the PZP (PHD1-zinc-knuckle-PHD2) domain of JADE engages the nucleosome through binding to histone H3 and DNA and is necessary for the association with chromatin targets. Recognition of unmethylated H3K4 by PZP directs enzymatic activity of the complex toward histone H4 acetylation, whereas H3K4 hypermethylation alters histone substrate selectivity. We demonstrate that PZP contributes to leukemogenesis, augmenting transforming activity of the NUP98-JADE2 fusion. Our findings highlight biological consequences and the impact of the intact JADE subunit on genomic recruitment, enzymatic function and pathological activity of the HBO1 complex.

18.
bioRxiv ; 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36711866

RESUMO

In 2018, we used internally calibrated chromatin immunoprecipitation (ICeChIP) to find that many of the most commonly used antibodies against H3K4 methylforms had significant off-target binding, which compromised the findings of at least eight literature paradigms that used these antibodies for ChIP-seq (Shah et al., 2018). In many cases, we were able to recapitulate the prior findings in K562 cells with the original, low-quality antibody, only to find that the models did not hold up to scrutiny with highly specific reagents and quantitative calibration. In a recent preprint originally prepared as a Letter to the Editor of Molecular Cell, though they agree with our overarching conclusions, Pekowska and colleagues take issue with analyses presented for two relatively minor points of the paper (Pekowska et al., 2023). We are puzzled by the assertion that these two points constitute the "bulk" of our findings, nor is it clear which components of our "analytical design" they find problematic. We feel their critique, however mild, is misguided.

19.
Nat Struct Mol Biol ; 13(2): 153-9, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16415880

RESUMO

Bacterial tRNA adenosine deaminases (TadAs) catalyze the hydrolytic deamination of adenosine to inosine at the wobble position of tRNA(Arg2), a process that enables this single tRNA to recognize three different arginine codons in mRNA. In addition, inosine is also introduced at the wobble position of multiple eukaryotic tRNAs. The genes encoding these deaminases are essential in bacteria and yeast, demonstrating the importance of their biological activity. Here we report the crystallization and structure determination to 2.0 A of Staphylococcus aureus TadA bound to the anticodon stem-loop of tRNA(Arg2) bearing nebularine, a non-hydrolyzable adenosine analog, at the wobble position. The cocrystal structure reveals the basis for both sequence and structure specificity in the interactions of TadA with RNA, and it additionally provides insight into the active site architecture that promotes efficient hydrolytic deamination.


Assuntos
RNA Bacteriano/química , RNA Bacteriano/metabolismo , Staphylococcus aureus/enzimologia , Adenosina Desaminase , Sequência de Bases , Sítios de Ligação , Catálise , Cristalografia por Raios X , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Quaternária de Proteína , Proteínas de Ligação a RNA , Staphylococcus aureus/genética
20.
Nat Struct Mol Biol ; 13(8): 713-9, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16878130

RESUMO

Histone H3 Lys4 (H3K4) methylation is a prevalent mark associated with transcription activation. A common feature of several H3K4 methyltransferase complexes is the presence of three structural components (RbBP5, Ash2L and WDR5) and a catalytic subunit containing a SET domain. Here we report the first biochemical reconstitution of a functional four-component mixed-lineage leukemia protein-1 (MLL1) core complex. This reconstitution, combined with in vivo assays, allows direct analysis of the contribution of each component to MLL1 enzymatic activity and their roles in transcriptional regulation. Moreover, taking clues from a crystal structure analysis, we demonstrate that WDR5 mediates interactions of the MLL1 catalytic unit both with the common structural platform and with the histone substrate. Mechanistic insights gained from this study can be generalized to the whole family of SET1-like histone methyltransferases in mammals.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Lisina/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Domínio Catalítico , Linhagem Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/química , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Metilação , Complexos Multiproteicos , Proteína de Leucina Linfoide-Mieloide/química , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Interferência de RNA , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA