Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Gen Physiol Biophys ; 30(2): 145-53, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21613669

RESUMO

Ultrasound velocimetry and densitometry methods were used to study the interactions of the Na,K-ATPase with the lipid bilayer in large unilamellar liposomes composed of dioleoyl phosphatidylcholine (DOPC). The ultrasound velocity increased and the specific volume of the phospholipids decreased with increasing concentrations of protein. These experiments allowed us to determine the reduced specific apparent compressibility of the lipid bilayer, which decreased by approx. 11% with increasing concentrations of the Na,K-ATPase up to an ATPase/DOPC molar ratio = 2 × 10⁻4. Assuming that ATPase induces rigidization of the surrounding lipid molecules one can obtain from the compressibility data that 3.7 to 100 times more lipid molecules are affected by the protein in comparison with annular lipids. However, this is in contradiction with the current theories of the phase transitions in lipid bilayers. It is suggested that another physical mechanisms should be involved for explanation of observed effect.


Assuntos
Bicamadas Lipídicas/química , Lipossomos/química , Fosfatidilcolinas/química , Proteolipídeos/química , ATPase Trocadora de Sódio-Potássio/química , Adenosina Trifosfatases/química , Animais , Membrana Celular/metabolismo , Densitometria/métodos , Halobacterium/enzimologia , Lipídeos/química , Modelos Químicos , Coelhos , Temperatura , Ultrassom , Água/química
2.
Biochim Biophys Acta ; 1768(6): 1466-78, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17462583

RESUMO

We applied precise densimetry and ultrasound velocimetry methods to study the interaction of a synthetic alpha-helical transmembrane peptide, acetyl-K(2)-L(24)-K(2)-amide (L(24)), with model bilayer lipid membranes. The large unilamellar vesicles (LUVs) utilized were composed of a homologous series of n-saturated diacylphosphatidylcholines (PCs). PCs whose hydrocarbon chains contained from 13 to 16 carbon atoms, thus producing phospholipid bilayers of different thicknesses and gel to liquid-crystalline phase transition temperatures. This allowed us to analyze how the difference between the hydrophobic length of the peptide and the hydrophobic thickness of the lipid bilayer influences the thermodynamical and mechanical properties of the membranes. We showed that the incorporation of L(24) decreases the temperature and cooperativity of the main phase transition of all LUVs studied. The presence of L(24) in the bilayer also caused an increase of the specific volume and of the volume compressibility in the gel state bilayers. In the liquid crystalline state, the peptide decreases the specific volume at relatively higher peptide concentration (mole ratio L(24):PC=1:50). The overall volume compressibility of the peptide-containing lipid bilayers in the liquid-crystalline state was in general higher in comparison with pure membranes. There was, however, a tendency for the volume compressibility of these lipid bilayers to decrease with higher peptide content in comparison with bilayers of lower peptide concentration. For one lipid composition, we also compared the thermodynamical and mechanical properties of LUVs and large multilamellar vesicles (MLVs) with and without L(24). As expected, a higher cooperativity of the changes of the thermodynamical and mechanical parameters took place for MLVs in comparison with LUVs. These results are in agreement with previously reported DSC and (2)H NMR spectroscopy study of the interaction of the L(24) and structurally related peptides with phosphatidylcholine bilayers. An apparent discrepancy between (2)H NMR spectroscopy and compressibility data in the liquid crystalline state may be connected with the complex and anisotropic nature of macroscopic mechanical properties of the membranes. The observed changes in membrane mechanical properties induced by the presence of L(24) suggest that around each peptide a distorted region exists that involves at least 2 layers of lipid molecules.


Assuntos
Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo , Fosfatidilcolinas/metabolismo , Densitometria , Espectroscopia de Ressonância Magnética , Estrutura Secundária de Proteína , Reologia , Temperatura , Termodinâmica , Ultrassom , Lipossomas Unilamelares/metabolismo
3.
Chem Phys Lipids ; 145(2): 97-105, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17196953

RESUMO

The specific volumes of six 1,2-diacylphosphatidylcholines with monounsaturated acyl chains (diCn:1PC, n=14-24 is the even number of acyl chain carbons) in fluid bilayers in multilamellar vesicles dispersed in H(2)O were determined by the vibrating tube densitometry as a function of temperature. From the data obtained with diCn:1PC (n=14-22) vesicles in combination with the densitometric data from Tristram-Nagle et al. [Tristram-Nagle, S., Petrache, H.I., Nagle, J.F., 1998. Structure and interactions of fully hydrated dioleoylphosphatidylcholine bilayers. Biophys. J. 75, 917-925.] and Koenig and Gawrisch [Koenig, B.W., Gawrisch, K., 2005. Specific volumes of unsaturated phosphatidylcholines in the liquid crystalline lamellar phase. Biochim. Biophys. Acta 1715, 65-70.], the component volumes of phosphatidylcholines in fully hydrated fluid bilayers at 30 degrees C were obtained. The volume of the acyl chain CH and CH(2) group is V(CH)=22.30 A(3) and V(CH2) =A(3), respectively. The volume of the headgroup including the glyceryl and acyl carbonyls, V(H), and the ratio of acyl chain methyl and methylene group volumes, r=V(CH3):V(CH2) are linearly interdependent: V(H)=a-br, where a=434.41 A(3) and b=-55.36 A(3) at 30 degrees C. From the temperature dependencies of component volumes, their isobaric thermal expansivities (alpha(X)=V(X)(-1)(partial differential V(X)/ partial differential T) where X=CH(2), CH, or H were calculated: alpha(CH2)=118.4x10(-5)K(-1), alpha(CH)=71.0x10(-5)K(-1), alpha(H)=7.9x10(-5)K(-1) (for r=2) and alpha(H)=9.6x10(-5)K(-1) (for r=1.9). The specific volume of diC24:1PC changes at the main gel-fluid phase transition temperature, t(m)=26.7 degrees C, by 0.0621 ml/g, its specific volume is 0.9561 and 1.02634 ml/g at 20 and 30 degrees C, respectively, and its isobaric thermal expansivity alpha=68.7x10(-5) and 109.2x10(-5)K(-1) below and above t(m), respectively. The component volumes and thermal expansivities obtained can be used for the interpretation of X-ray and neutron scattering and diffraction experiments and for the guiding and testing molecular dynamics simulations of phosphatidylcholine bilayers in the fluid state.


Assuntos
Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Densitometria , Fluidez de Membrana , Transição de Fase , Temperatura
4.
Bioelectrochemistry ; 80(1): 55-61, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20537963

RESUMO

We synthesized 25,26,27,28-tetrakis(11-sulfanylundecyloxy)calix[4]arene (CALIX) sensitive to dopamine and confirmed its structure by (1)H NMR and mass spectrometry. Chemisorption of CALIX molecules or their mixtures with 1-dodecanethiols (DDT) or hexadecanethiols (HDT) resulted in formation of compact low permeable monolayers as revealed by cyclic voltammetry at presence of redox probe [Fe(CN)(6)](3-/4-). These self-assembled monolayers (SAMs) served as sensor for dopamine. Thickness shear mode acoustic method (TSM) has been used for study the interaction of dopamine with calixarene SAM. The admittance spectra of TSM transducer have been measured and used for simultaneous determination of the changes in series resonant frequency, f(S), and motional resistance, R(m), respectively. Addition of dopamine resulted in substantial decrease of f(S) and increase of R(m), which is evidence on increased viscoelastic contribution into the acoustic properties of the sensing layer. Limit of detection (LOD) for dopamine was 50 pM, which is much better in comparison with so far reported lowest LOD for dopamine-sensitive electrochemical sensors (20 nM). The sensor allowed discrimination between dopamine and epinephrine.


Assuntos
Acústica/instrumentação , Técnicas Biossensoriais/instrumentação , Calixarenos/química , Dopamina/análise , Técnicas Biossensoriais/métodos , Calixarenos/síntese química , Eletroquímica , Eletrodos , Epinefrina/análise , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Oxirredução , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Prata/química , Compostos de Prata/química , Compostos de Sulfidrila/química , Propriedades de Superfície , Fatores de Tempo , Transdutores
5.
Bioorg Med Chem Lett ; 14(15): 3897-900, 2004 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-15225693

RESUMO

19-mer oligonucleotides with oleylamine tethered at 3' and 5' terminal, respectively, were incorporated into unilamellar liposomes of dioleoylphosphatidylcholine (DOPC). Addition of complementary nucleotide resulted in hybridization with oligonucleotides located on different liposomes and caused liposome aggregation. Significant changes of sound velocimetry and turbidity were readily observed at 10 nM concentration of the complementary chain.


Assuntos
DNA Viral/química , Lipossomos/química , Hibridização de Ácido Nucleico , Sequência de Bases , DNA Ligases , Cinética , Nefelometria e Turbidimetria , Oligodesoxirribonucleotídeos/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA