Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FASEB J ; 35(5): e21520, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33811381

RESUMO

Bassoon (BSN) is a presynaptic cytomatrix protein ubiquitously present at chemical synapses of the central nervous system, where it regulates synaptic vesicle replenishment and organizes voltage-gated Ca2+ channels. In sensory photoreceptor synapses, BSN additionally plays a decisive role in anchoring the synaptic ribbon, a presynaptic organelle and functional extension of the active zone, to the presynaptic membrane. In this study, we functionally and structurally analyzed two mutant mouse lines with a genetic disruption of Bsn-Bsngt and Bsnko -using electrophysiology and high-resolution microscopy. In both Bsn mutant mouse lines, full-length BSN was abolished, and photoreceptor synaptic function was similarly impaired, yet synapse structure was more severely affected in Bsngt/gt than in Bsnko/ko photoreceptors. The synaptic defects in Bsngt/gt retina coincide with remodeling of the outer retina-rod bipolar and horizontal cell sprouting, formation of ectopic ribbon synaptic sites-and death of cone photoreceptors, processes that did not occur in Bsnko/ko retina. An analysis of Bsngt/ko hybrid mice revealed that the divergent retinal phenotypes of Bsngt/gt and Bsnko/ko mice can be attributed to the expression of the Bsngt allele, which triggers cone photoreceptor death and neurite sprouting in the outer retina. These findings shed new light on the existing Bsn mutant mouse models and might help to understand mechanisms that drive photoreceptor death.


Assuntos
Modelos Animais de Doenças , Mutação , Proteínas do Tecido Nervoso/fisiologia , Retina/patologia , Células Fotorreceptoras Retinianas Cones/patologia , Células Fotorreceptoras Retinianas Bastonetes/patologia , Sinapses/patologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Sinapses/metabolismo , Transmissão Sináptica
2.
Front Physiol ; 9: 417, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29719516

RESUMO

Odorant binding proteins (OBPs) enriched in the sensillum lymph are instrumental in facilitating the transfer of odorous molecules to the responsive receptors. In Orthopteran locust species, an in-depth understanding of this important soluble protein family is still elusive. In a previous study, we have demonstrated that the repertoire of locust OBPs can be divided into four major clades (I-IV) on the phylogenetic scale and for representatives of subfamily I-A and II-A a distinct sensilla-specific expression pattern was determined. In this study, by focusing on a representative locust species, the desert locust Schistocerca gregaria, we have explored the antennal topographic expression for representative OBPs of other subfamilies. First, subtypes of subfamily III-A and III-B were exclusively found in sensilla chaetica. Then, a similar expression pattern in this sensillum type was observed for subfamily I-B subtypes, but with a distinct OBP that was expressed in sensilla coeloconica additionally. Moreover, the atypical OBP subtype from subfamily IV-A was expressed in a subpopulation of sensilla coeloconica. Last, the plus-C type-B OBP subtype from subfamily IV-B seems to be associated with all four antennal sensillum types. These results profile diversified sensilla-specific expression patterns of the desert locust OBPs from different subfamilies and complex co-localization phenotypes of distinct OBP subtypes in defined sensilla, which provide informative clues concerning their possible functional mode as well as a potential interplay among OBP partners within a sensillum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA