Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 5(5): e1000470, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19424417

RESUMO

The SWI/SNF chromatin remodeling complexes regulate the transcription of many genes by remodeling nucleosomes at promoter regions. In Drosophila, SWI/SNF plays an important role in ecdysone-dependent transcription regulation. Studies in human cells suggest that Brahma (Brm), the ATPase subunit of SWI/SNF, regulates alternative pre-mRNA splicing by modulating transcription elongation rates. We describe, here, experiments that study the association of Brm with transcribed genes in Chironomus tentans and Drosophila melanogaster, the purpose of which was to further elucidate the mechanisms by which Brm regulates pre-mRNA processing. We show that Brm becomes incorporated into nascent Balbiani ring pre-mRNPs co-transcriptionally and that the human Brm and Brg1 proteins are associated with RNPs. We have analyzed the expression profiles of D. melanogaster S2 cells in which the levels of individual SWI/SNF subunits have been reduced by RNA interference, and we show that depletion of SWI/SNF core subunits changes the relative abundance of alternative transcripts from a subset of genes. This observation, and the fact that a fraction of Brm is not associated with chromatin but with nascent pre-mRNPs, suggest that SWI/SNF affects pre-mRNA processing by acting at the RNA level. Ontology enrichment tests indicate that the genes that are regulated post-transcriptionally by SWI/SNF are mostly enzymes and transcription factors that regulate postembryonic developmental processes. In summary, the data suggest that SWI/SNF becomes incorporated into nascent pre-mRNPs and acts post-transcriptionally to regulate not only the amount of mRNA synthesized from a given promoter but also the type of alternative transcript produced.


Assuntos
Proteínas de Drosophila/metabolismo , Precursores de RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Ribonucleoproteínas/metabolismo , Processamento Alternativo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Chironomidae/genética , Chironomidae/metabolismo , Cromossomos/genética , Cromossomos/metabolismo , Cromossomos/ultraestrutura , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Genes de Insetos , Células HeLa , Humanos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Microscopia Imunoeletrônica , Modelos Biológicos , Precursores de RNA/genética , Processamento Pós-Transcricional do RNA , Ribonucleoproteína Nuclear Pequena U1/genética , Ribonucleoproteínas/genética , Transativadores/genética , Transativadores/metabolismo
2.
FASEB J ; 23(8): 2587-94, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19329760

RESUMO

The 6-protein complex shelterin protects the telomeres of human chromosomes. The recent discovery that telomeres are important for epigenetic gene regulation and vertebrate embryonic development calls for the establishment of model organisms to study shelterin and telomere function under normal developmental conditions. Here, we report the sequences of the shelterin-encoding genes in Xenopus laevis and its close relation Xenopus tropicalis. In vitro expression and biochemical characterization of the Xenopus shelterin proteins TRF1, TRF2, POT1, TIN2, RAP1, TPP1, and the shelterin accessory factor PINX1 indicate that all main functions of their human orthologs are conserved in Xenopus. The XlTRF1 and XtTRF1 proteins bind double-stranded telomeric DNA sequence specifically and interact with XlTIN2 and XtTIN2, respectively. Similarly, the XlTRF2 and XtTRF2 proteins bind double-stranded telomeric DNA and interact with XlRAP1 and XtRAP1, respectively, whereas the XlPOT1 and XtPOT1 proteins bind single-stranded telomeric DNA. Real-time PCR further reveals the gene expression profiles for telomerase and the shelterin genes during embryogenesis. Notably, the composition of shelterin and the formation of its subcomplexes appear to be temporally regulated during embryonic development. Moreover, unexpectedly high telomerase and shelterin gene expression during early embryogenesis may reflect a telomere length-resetting mechanism, similar to that reported for induced pluripotent stem cells and for animals cloned through somatic nuclear transfer.


Assuntos
Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/crescimento & desenvolvimento , Xenopus/metabolismo , Animais , Sequência de Bases , DNA/genética , DNA/metabolismo , Primers do DNA/genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Óvulo/metabolismo , Complexo Shelterina , Telômero/genética , Proteínas de Ligação a Telômeros/química , Proteínas de Ligação a Telômeros/genética , Proteína 1 de Ligação a Repetições Teloméricas/genética , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/genética , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Xenopus/genética , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Xenopus laevis/genética , Xenopus laevis/crescimento & desenvolvimento , Xenopus laevis/metabolismo
3.
J Cell Biochem ; 108(3): 565-76, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19650111

RESUMO

The ATP-dependent chromatin remodelling complexes SWI/SNF alter the chromatin structure in transcriptional regulation. Several classes of mammalian SWI/SNF complex have been isolated biochemically, distinguished by a few specific subunits, such as the BAF-specific BAF250A, BAF250B and BRM, and the PBAF-specific BAF180. We have determined the complex compositions using low stringency immunoprecipitation (IP) and shown that the pattern of subunit interactions was more diverse than previously defined classes had predicted. The subunit association at five gene promoters that depend on the SWI/SNF activity varied and the sequential chromatin immunoprecipitations revealed that different class-specific subunits occupied the promoters at the same time. The low-stringency IP showed that the BAF-specific BAF250A and BAF250B and the PBAF-specific BAF180 co-exist in a subset of SWI/SNF complexes, and fractionation of nuclear extract on size-exclusion chromatography demonstrated that sub-complexes with unorthodox subunit compositions were present in the cell. We propose a model in which the constellations of SWI/SNF complexes are "tailored" for each specific chromatin target and depend on the local chromatin environment to which complexes and sub-complexes are recruited.


Assuntos
Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Mamíferos/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Animais , Fracionamento Celular , Imunoprecipitação da Cromatina , Cromatografia em Gel , Proteínas Cromossômicas não Histona/isolamento & purificação , Proteínas de Ligação a DNA , Células HeLa , Humanos , Imunoprecipitação , Proteínas Nucleares/metabolismo , Nucleossomos/metabolismo , Especificidade de Órgãos/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Subunidades Proteicas/metabolismo , Sais , Fatores de Transcrição/isolamento & purificação
4.
PLoS One ; 6(12): e28049, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22162999

RESUMO

BACKGROUND: Scaffold attachment factor A (SAF-A) participates in the regulation of gene expression by organizing chromatin into transcriptionally active domains and by interacting directly with RNA polymerase II. METHODOLOGY: Here we use co-localization, co-immunoprecipitation (co-IP) and in situ proximity ligation assay (PLA) to identify Brahma Related Gene 1 (BRG1), the ATP-driven motor of the human SWI-SNF chromatin remodeling complex, as another SAF-A interaction partner in mouse embryonic stem (mES) cells. We also employ RNA interference to investigate functional aspects of the SAF-A/BRG1 interaction. PRINCIPAL FINDINGS: We find that endogenous SAF-A protein interacts with endogenous BRG1 protein in mES cells, and that the interaction does not solely depend on the presence of mRNA. Moreover the interaction remains intact when cells are induced to differentiate. Functional analyses reveal that dual depletion of SAF-A and BRG1 abolishes global transcription by RNA polymerase II, while the nucleolar RNA polymerase I transcription machinery remains unaffected. CONCLUSIONS: We demonstrate that SAF-A interacts with BRG1 and that both components are required for RNA Polymerase II Mediated Transcription.


Assuntos
DNA Helicases/metabolismo , Proteínas de Ligação a DNA/química , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , Proteínas Nucleares/metabolismo , RNA Polimerase II/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , RNA Polimerases Dirigidas por DNA/metabolismo , Células-Tronco Embrionárias/citologia , Humanos , Camundongos , Microscopia Confocal/métodos , Modelos Biológicos , Ligação Proteica , RNA Mensageiro/metabolismo , Transcrição Gênica
5.
Cell Reprogram ; 13(1): 13-27, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21235343

RESUMO

Methodologies to reprogram somatic cells into patient-specific pluripotent cells, which could potentially be used in personalized drug discovery and cell replacement therapies, are currently under development. Oct4 activation is essential for successful reprogramming and pluripotency of embryonic stem (ES) cells, albeit molecular details of Oct4 activation are not completely understood. Here we report that endogenous SAF-A is involved in regulation of Oct4 expression, binds the Oct4 proximal promoter in ES cells, and dissociates from the promoter upon early differentiation induced by LIF withdrawal. Depletion of SAF-A decreases Oct4 expression even in the presence of LIF, and results in an increase of the mesodermal marker Brachyury. The overexpression of wild-type human SAF-A rescues the mouse knock-down phenotype and results in increased Oct4 level. We also demonstrate that endogenous SAF-A interacts with the C-terminal domain (CTD) of endogenous RNA polymerase II and that the interaction is independent of CTD phosphorylation and mRNA. Moreover, we show that SAF-A exist in complexes with transcription factors Sox2 and Oct4 as well as STAT3 in ES cells. The number of endogenous SAF-A:Oct4 and SAF-A:Sox2 complexes decreases upon LIF depletion. These discoveries allow us to propose a model for activation of Oct4 transcription.


Assuntos
Células-Tronco Embrionárias/fisiologia , Regulação da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Regiões Promotoras Genéticas , Transcrição Gênica , Animais , Linhagem Celular , Células-Tronco Embrionárias/citologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/genética , Humanos , Camundongos , Fator 3 de Transcrição de Octâmero/genética , RNA Polimerase II/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fator de Transcrição STAT3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA