Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 580(7802): 227-231, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32269351

RESUMO

Atmospheric carbon dioxide enrichment (eCO2) can enhance plant carbon uptake and growth1-5, thereby providing an important negative feedback to climate change by slowing the rate of increase of the atmospheric CO2 concentration6. Although evidence gathered from young aggrading forests has generally indicated a strong CO2 fertilization effect on biomass growth3-5, it is unclear whether mature forests respond to eCO2 in a similar way. In mature trees and forest stands7-10, photosynthetic uptake has been found to increase under eCO2 without any apparent accompanying growth response, leaving the fate of additional carbon fixed under eCO2 unclear4,5,7-11. Here using data from the first ecosystem-scale Free-Air CO2 Enrichment (FACE) experiment in a mature forest, we constructed a comprehensive ecosystem carbon budget to track the fate of carbon as the forest responded to four years of eCO2 exposure. We show that, although the eCO2 treatment of +150 parts per million (+38 per cent) above ambient levels induced a 12 per cent (+247 grams of carbon per square metre per year) increase in carbon uptake through gross primary production, this additional carbon uptake did not lead to increased carbon sequestration at the ecosystem level. Instead, the majority of the extra carbon was emitted back into the atmosphere via several respiratory fluxes, with increased soil respiration alone accounting for half of the total uptake surplus. Our results call into question the predominant thinking that the capacity of forests to act as carbon sinks will be generally enhanced under eCO2, and challenge the efficacy of climate mitigation strategies that rely on ubiquitous CO2 fertilization as a driver of increased carbon sinks in global forests.


Assuntos
Atmosfera/química , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Sequestro de Carbono , Florestas , Árvores/metabolismo , Biomassa , Eucalyptus/crescimento & desenvolvimento , Eucalyptus/metabolismo , Aquecimento Global/prevenção & controle , Modelos Biológicos , New South Wales , Fotossíntese , Solo/química , Árvores/crescimento & desenvolvimento
2.
BMC Genomics ; 25(1): 640, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937661

RESUMO

BACKGROUND: Drought adaptation is critical to many tree species persisting under climate change, however our knowledge of the genetic basis for trees to adapt to drought is limited. This knowledge gap impedes our fundamental understanding of drought response and application to forest production and conservation. To improve our understanding of the genomic determinants, architecture, and trait constraints, we assembled a reference genome and detected ~ 6.5 M variants in 432 phenotyped individuals for the foundational tree Corymbia calophylla. RESULTS: We found 273 genomic variants determining traits with moderate heritability (h2SNP = 0.26-0.64). Significant variants were predominantly in gene regulatory elements distributed among several haplotype blocks across all chromosomes. Furthermore, traits were constrained by frequent epistatic and pleiotropic interactions. CONCLUSIONS: Our results on the genetic basis for drought traits in Corymbia calophylla have several implications for the ability to adapt to climate change: (1) drought related traits are controlled by complex genomic architectures with large haplotypes, epistatic, and pleiotropic interactions; (2) the most significant variants determining drought related traits occurred in regulatory regions; and (3) models incorporating epistatic interactions increase trait predictions. Our findings indicate that despite moderate heritability drought traits are likely constrained by complex genomic architecture potentially limiting trees response to climate change.


Assuntos
Secas , Epistasia Genética , Genômica , Genoma de Planta , Haplótipos , Locos de Características Quantitativas , Fenótipo , Polimorfismo de Nucleotídeo Único
3.
Mol Ecol ; 31(6): 1735-1752, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35038378

RESUMO

Temperature and precipitation regimes are rapidly changing, resulting in forest dieback and extinction events, particularly in Mediterranean-type climates (MTC). Forest management that enhance forests' resilience is urgently required, however adaptation to climates in heterogeneous landscapes with multiple selection pressures is complex. For widespread trees in MTC we hypothesized that: patterns of local adaptation are associated with climate; precipitation is a stronger factor of adaptation than temperature; functionally related genes show similar signatures of adaptation; and adaptive variants are independently sorting across the landscape. We sampled 28 populations across the geographic distribution of Eucalyptus marginata (jarrah), in South-west Western Australia, and obtained 13,534 independent single nucleotide polymorphic (SNP) markers across the genome. Three genotype-association analyses that employ different ways of correcting population structure were used to identify putatively adapted SNPs associated with independent climate variables. While overall levels of population differentiation were low (FST  = 0.04), environmental association analyses found a total of 2336 unique SNPs associated with temperature and precipitation variables, with 1440 SNPs annotated to genic regions. Considerable allelic turnover was identified for SNPs associated with temperature seasonality and mean precipitation of the warmest quarter, suggesting that both temperature and precipitation are important factors in adaptation. SNPs with similar gene functions had analogous allelic turnover along climate gradients, while SNPs among temperature and precipitation variables had uncorrelated patterns of adaptation. These contrasting patterns provide evidence that there may be standing genomic variation adapted to current climate gradients, providing the basis for adaptive management strategies to bolster forest resilience in the future.


Assuntos
Genética Populacional , Árvores , Adaptação Fisiológica/genética , Genômica , Polimorfismo de Nucleotídeo Único/genética , Seleção Genética , Árvores/genética
4.
Plant Cell Environ ; 45(12): 3476-3491, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36151708

RESUMO

Local adaptation is a driver of biological diversity, and species may develop analogous (parallel evolution) or alternative (divergent evolution) solutions to similar ecological challenges. We expect these adaptive solutions would culminate in both phenotypic and genotypic signals. Using two Eucalyptus species (Eucalyptus grandis and Eucalyptus tereticornis) with overlapping distributions grown under contrasting 'local' temperature conditions to investigate the independent contribution of adaptation and plasticity at molecular, physiological and morphological levels. The link between gene expression and traits markedly differed between species. Divergent evolution was the dominant pattern driving adaptation (91% of all significant genes); but overlapping gene (homologous) responses were dependent on the determining factor (plastic, adaptive or genotype by environment interaction). Ninety-eight percent of the plastic homologs were similarly regulated, while 50% of the adaptive homologs and 100% of the interaction homologs were antagonistical. Parallel evolution for the adaptive effect in homologous genes was greater than expected but not in favour of divergent evolution. Heat shock proteins for E. grandis were almost entirely driven by adaptation, and plasticity in E. tereticornis. These results suggest divergent molecular evolutionary solutions dominated the adaptive mechanisms among species, even in similar ecological circumstances. Suggesting that tree species with overlapping distributions are unlikely to equally persist in the future.


Assuntos
Eucalyptus , Árvores , Árvores/genética , Eucalyptus/genética , Fenótipo , Adaptação Fisiológica/genética , Evolução Molecular , Plásticos , Evolução Biológica
5.
Ann Bot ; 127(7): 909-918, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33606015

RESUMO

BACKGROUND AND AIMS: Extreme drought conditions across the globe are impacting biodiversity, with serious implications for the persistence of native species. However, quantitative data on physiological tolerance are not available for diverse flora to inform conservation management. We quantified physiological resistance to cavitation in the diverse Hakea genus (Proteaceae) to test predictions based on climatic origin, life history and functional traits. METHODS: We sampled terminal branches of replicate plants of 16 species in a common garden. Xylem cavitation was induced in branches under varying water potentials (tension) in a centrifuge, and the tension generating 50 % loss of conductivity (stem P50) was characterized as a metric for cavitation resistance. The same branches were used to estimate plant functional traits, including wood density, specific leaf area and Huber value (sap flow area to leaf area ratio). KEY RESULTS: There was significant variation in stem P50 among species, which was negatively associated with the species climate origin (rainfall and aridity). Cavitation resistance did not differ among life histories; however, a drought avoidance strategy with terete leaf form and greater Huber value may be important for species to colonize and persist in the arid biome. CONCLUSIONS: This study highlights climate (rainfall and aridity), rather than life history and functional traits, as the key predictor of variation in cavitation resistance (stem P50). Rainfall for species origin was the best predictor of cavitation resistance, explaining variation in stem P50, which appears to be a major determinant of species distribution. This study also indicates that stem P50 is an adaptive trait, genetically determined, and hence reliable and robust for predicting species vulnerability to climate change. Our findings will contribute to future prediction of species vulnerability to drought and adaptive management under climate change.


Assuntos
Proteaceae , Secas , Ecossistema , Folhas de Planta , Árvores , Água , Xilema
6.
New Phytol ; 227(3): 780-793, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32255508

RESUMO

We used a widely distributed tree Eucalyptus camaldulensis subsp. camaldulensis to partition intraspecific variation in leaf functional traits to genotypic variation and phenotypic plasticity. We examined if genotypic variation is related to the climate of genotype provenance and whether phenotypic plasticity maintains performance in a changing environment. Ten genotypes from different climates were grown in a common garden under watering treatments reproducing the wettest and driest edges of the subspecies' distribution. We measured functional traits reflecting leaf metabolism and associated with growth (respiration rate, nitrogen and phosphorus concentrations, and leaf mass per area) and performance proxies (aboveground biomass and growth rate) each season over a year. Genotypic variation contributed substantially to the variation in aboveground biomass but much less in growth rate and leaf traits. Phenotypic plasticity was a large source of the variation in leaf traits and performance proxies and was greater among sampling dates than between watering treatments. The variation in leaf traits was weakly correlated to performance proxies, and both were unrelated to the climate of genotype provenance. Intraspecific variation in leaf traits arises similarly among genotypes in response to seasonal environmental variation, instead of long-term water availability or climate of genotype provenance.


Assuntos
Eucalyptus , Eucalyptus/genética , Genótipo , Folhas de Planta/genética , Estações do Ano , Água
7.
Mol Ecol ; 29(20): 3872-3888, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32885504

RESUMO

Global climate change poses a significant threat to natural communities around the world, with many plant species showing signs of climate stress. Grassland ecosystems are not an exception, with climate change compounding contemporary pressures such as habitat loss and fragmentation. In this study, we assess the climate resilience of Themeda triandra, a foundational species and the most widespread plant in Australia, by assessing the relative contributions of spatial, environmental and ploidy factors to contemporary genomic variation. Reduced-representation genome sequencing on 472 samples from 52 locations was used to test how the distribution of genomic variation, including ploidy polymorphism, supports adaptation to hotter and drier climates. We explicitly quantified isolation by distance (IBD) and isolation by environment (IBE) and predicted genomic vulnerability of populations to future climates based on expected deviation from current genomic composition. We found that a majority (54%) of genomic variation could be attributed to IBD, while an additional 22% (27% when including ploidy information) could be explained by two temperature and two precipitation climate variables demonstrating IBE. Ploidy polymorphisms were common within populations (31/52 populations), indicating that ploidy mixing is characteristic of T. triandra populations. Genomic vulnerabilities were found to be heterogeneously distributed throughout the landscape, and our analysis suggested that ploidy polymorphism, along with other factors linked to polyploidy, reduced vulnerability to future climates by 60% (0.25-0.10). Our data suggests that polyploidy may facilitate adaptation to hotter climates and highlight the importance of incorporating ploidy in adaptive management strategies to promote the resilience of this and other foundation species.


Assuntos
Ecossistema , Poaceae , Austrália , Mudança Climática , Genômica , Ploidias , Poaceae/genética
8.
New Phytol ; 224(2): 632-643, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31264226

RESUMO

Catastrophic failure of the water transport pathway in trees is a principal mechanism of mortality during extreme drought. To be able to predict the probability of mortality at an individual and landscape scale we need knowledge of the time for plants to reach critical levels of hydraulic failure. We grew plants of eight species of Eucalyptus originating from contrasting climates before allowing a subset to dehydrate. We tested whether a trait-based model of time to plant desiccation tcrit , from stomatal closure gs90 to a critical level of hydraulic dysfunction Ψcrit is consistent with observed dry-down times. Plant desiccation time varied among species, ranging from 96.2 to 332 h at a vapour-pressure deficit of 1 kPa, and was highly predictable using the tcrit model in conjunction with a leaf shedding function. Plant desiccation time was longest in species with high cavitation resistance, strong vulnerability segmentation, wide stomatal-hydraulic safety, and a high ratio of total plant water content to leaf area. Knowledge of tcrit in combination with water-use traits that influence stomatal closure could significantly increase our ability to predict the timing of drought-induced mortality at tree and forest scales.


Assuntos
Clima , Secas , Eucalyptus/genética , Eucalyptus/fisiologia , Água/fisiologia , Evolução Biológica , Ecossistema , Especificidade da Espécie
9.
Mol Ecol ; 28(10): 2502-2516, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30950536

RESUMO

Global climate is rapidly changing, and the ability for tree species to adapt is dependent on standing genomic variation; however, the distribution and abundance of functional and adaptive variants are poorly understood in natural systems. We test key hypotheses regarding the genetics of adaptive variation in a foundation tree: genomic variation is associated with climate, and genomic variation is more likely to be associated with temperature than precipitation or aridity. To test these hypotheses, we used 9,593 independent, genomic single-nucleotide polymorphisms (SNPs) from 270 individuals sampled from Corymbia calophylla's entire distribution in south-western Western Australia, spanning orthogonal temperature and precipitation gradients. Environmental association analyses returned 537 unique SNPs putatively adaptive to climate. We identified SNPs associated with climatic variation (i.e., temperature [458], precipitation [75] and aridity [78]) across the landscape. Of these, 78 SNPs were nonsynonymous (NS), while 26 SNPs were found within gene regulatory regions. The NS and regulatory candidate SNPs associated with temperature explained more deviance (27.35%) than precipitation (5.93%) and aridity (4.77%), suggesting that temperature provides stronger adaptive signals than precipitation. Genes associated with adaptive variants include functions important in stress responses to temperature and precipitation. Patterns of allelic turnover of NS and regulatory SNPs show small patterns of change through climate space with the exception of an aldehyde dehydrogenase gene variant with 80% allelic turnover with temperature. Together, these findings provide evidence for the presence of adaptive variation to climate in a foundation species and provide critical information to guide adaptive management practices.


Assuntos
Genética Populacional , Genômica , Seleção Genética , Árvores/genética , Clima , Variação Genética/genética , Genótipo , Polimorfismo de Nucleotídeo Único/genética , Sequências Reguladoras de Ácido Nucleico/genética , Árvores/crescimento & desenvolvimento
10.
Glob Chang Biol ; 25(5): 1665-1684, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30746837

RESUMO

Understanding forest tree responses to climate warming and heatwaves is important for predicting changes in tree species diversity, forest C uptake, and vegetation-climate interactions. Yet, tree species differences in heatwave tolerance and their plasticity to growth temperature remain poorly understood. In this study, populations of four Eucalyptus species, two with large range sizes and two with comparatively small range sizes, were grown under two temperature treatments (cool and warm) before being exposed to an equivalent experimental heatwave. We tested whether the species with large and small range sizes differed in heatwave tolerance, and whether trees grown under warmer temperatures were more tolerant of heatwave conditions than trees grown under cooler temperatures. Visible heatwave damage was more common and severe in the species with small rather than large range sizes. In general, species that showed less tissue damage maintained higher stomatal conductance, lower leaf temperatures, larger increases in isoprene emissions, and less photosynthetic inhibition than species that showed more damage. Species exhibiting more severe visible damage had larger increases in heat shock proteins (HSPs) and respiratory thermotolerance (Tmax ). Thus, across species, increases in HSPs and Tmax were positively correlated, but inversely related to increases in isoprene emissions. Integration of leaf gas-exchange, isoprene emissions, proteomics, and respiratory thermotolerance measurements provided new insight into mechanisms underlying variability in tree species heatwave tolerance. Importantly, warm-grown seedlings were, surprisingly, more susceptible to heatwave damage than cool-grown seedlings, which could be associated with reduced enzyme concentrations in leaves. We conclude that species with restricted range sizes, along with trees growing under climate warming, may be more vulnerable to heatwaves of the future.


Assuntos
Mudança Climática , Eucalyptus/fisiologia , Resposta ao Choque Térmico/fisiologia , Temperatura , Eucalyptus/genética , Eucalyptus/crescimento & desenvolvimento , Eucalyptus/metabolismo , Florestas , Fotossíntese/fisiologia , Dispersão Vegetal , Folhas de Planta/fisiologia , Especificidade da Espécie , Termotolerância
11.
Mol Ecol ; 27(6): 1342-1356, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29524276

RESUMO

Detecting genetic variants under selection using FST outlier analysis (OA) and environmental association analyses (EAAs) are popular approaches that provide insight into the genetic basis of local adaptation. Despite the frequent use of OA and EAA approaches and their increasing attractiveness for detecting signatures of selection, their application to field-based empirical data have not been synthesized. Here, we review 66 empirical studies that use Single Nucleotide Polymorphisms (SNPs) in OA and EAA. We report trends and biases across biological systems, sequencing methods, approaches, parameters, environmental variables and their influence on detecting signatures of selection. We found striking variability in both the use and reporting of environmental data and statistical parameters. For example, linkage disequilibrium among SNPs and numbers of unique SNP associations identified with EAA were rarely reported. The proportion of putatively adaptive SNPs detected varied widely among studies, and decreased with the number of SNPs analysed. We found that genomic sampling effort had a greater impact than biological sampling effort on the proportion of identified SNPs under selection. OA identified a higher proportion of outliers when more individuals were sampled, but this was not the case for EAA. To facilitate repeatability, interpretation and synthesis of studies detecting selection, we recommend that future studies consistently report geographical coordinates, environmental data, model parameters, linkage disequilibrium, and measures of genetic structure. Identifying standards for how OA and EAA studies are designed and reported will aid future transparency and comparability of SNP-based selection studies and help to progress landscape and evolutionary genomics.


Assuntos
Adaptação Fisiológica/genética , Genômica , Polimorfismo de Nucleotídeo Único/genética , Seleção Genética/genética , Evolução Biológica , Interação Gene-Ambiente , Variação Genética/genética , Genética Populacional , Genoma/genética , Genótipo , Desequilíbrio de Ligação
12.
Plant Cell Environ ; 41(3): 646-660, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29314083

RESUMO

Plant hydraulic traits capture the impacts of drought stress on plant function, yet vegetation models lack sufficient information regarding trait coordination and variation with climate-of-origin across species. Here, we investigated key hydraulic and carbon economy traits of 12 woody species in Australia from a broad climatic gradient, with the aim of identifying the coordination among these traits and the role of climate in shaping cross-species trait variation. The influence of environmental variation was minimized by a common garden approach, allowing us to factor out the influence of environment on phenotypic variation across species. We found that hydraulic traits (leaf turgor loss point, stomatal sensitivity to drought [Pgs ], xylem vulnerability to cavitation [Px ], and branch capacitance [Cbranch ]) were highly coordinated across species and strongly related to rainfall and aridity in the species native distributional range. In addition, trade-offs between drought tolerance and plant growth rate were observed across species. Collectively, these results provide critical insight into the coordination among hydraulic traits in modulating drought adaptation and will significantly advance our ability to predict drought vulnerability in these dominant trees species.


Assuntos
Folhas de Planta/fisiologia , Árvores/fisiologia , Xilema/fisiologia , Adaptação Fisiológica , Carbono/metabolismo , Clima , Secas , Florestas , New South Wales , Estômatos de Plantas , Chuva
13.
Mol Phylogenet Evol ; 108: 70-87, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28185948

RESUMO

Reticulate evolution by hybridization is considered a common process shaping the evolution of many plant species, however, reticulation could also be due to incomplete lineage sorting in biodiverse systems. For our study we selected a group of closely related plant taxa with contrasting yet partially overlapping geographic distributions and different population sizes, to distinguish between reticulated patterns due to hybridization and incomplete lineage sorting. We predicted that sympatric or proximal populations of different species are more likely to have gene flow than geographically distant populations of the same widespread species. Furthermore, for species with restricted distributions, and therefore, small effective population sizes, we predicted complete lineage sorting. Eastern grey box eucalypt species (Eucalyptus supraspecies Moluccanae) provide an ideal system to explore patterns of reticulate evolution. They form a diverse, recently evolved and phylogenetically undefined group within Eucalyptus, with overlapping morphological features and hybridization in nature. We used a multi-faceted approach, combining analyses of chloroplast and nuclear DNA, as well as seedling morphology, flowering time and ecological spatial differentiation in order to test for species delimitation and reticulate evolution in this group. The multiple layers of results were consistent and suggested a lack of monophyly at different hierarchical levels due to multidirectional gene flow among several species, challenging species delimitation. Chloroplast and nuclear haplotypes were shared among different species in geographic proximity, consistent with hybridization zones. Furthermore, species with restricted distributions appeared better resolved due to lineage sorting in the absence of hybridization. We conclude that a combination of molecular, morphological and ecological approaches is required to disentangle patterns of reticulate evolution in the box eucalypts.


Assuntos
Evolução Biológica , Ecossistema , Eucalyptus/anatomia & histologia , Eucalyptus/genética , Austrália , Teorema de Bayes , Cloroplastos/genética , Análise Discriminante , Flores/fisiologia , Marcadores Genéticos , Geografia , Haplótipos/genética , Repetições de Microssatélites/genética , Filogenia , Folhas de Planta/anatomia & histologia , Especificidade da Espécie
15.
Glob Chang Biol ; 21(10): 3800-13, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26033432

RESUMO

Intraspecific variation in phenotypic plasticity is a critical determinant of plant species capacity to cope with climate change. A long-standing hypothesis states that greater levels of environmental variability will select for genotypes with greater phenotypic plasticity. However, few studies have examined how genotypes of woody species originating from contrasting environments respond to multiple climate change factors. Here, we investigated the main and interactive effects of elevated [CO2 ] (CE ) and elevated temperature (TE ) on growth and physiology of Coastal (warmer, less variable temperature environment) and Upland (cooler, more variable temperature environment) genotypes of an Australian woody species Telopea speciosissima. Both genotypes were positively responsive to CE (35% and 29% increase in whole-plant dry mass and leaf area, respectively), but only the Coastal genotype exhibited positive growth responses to TE . We found that the Coastal genotype exhibited greater growth response to TE (47% and 85% increase in whole-plant dry mass and leaf area, respectively) when compared with the Upland genotype (no change in dry mass or leaf area). No intraspecific variation in physiological plasticity was detected under CE or TE , and the interactive effects of CE and TE on intraspecific variation in phenotypic plasticity were also largely absent. Overall, TE was a more effective climate factor than CE in exposing genotypic variation in our woody species. Our results contradict the paradigm that genotypes from more variable climates will exhibit greater phenotypic plasticity in future climate regimes.


Assuntos
Mudança Climática , Interação Gene-Ambiente , Proteaceae/crescimento & desenvolvimento , Proteaceae/genética , Dióxido de Carbono/análise , Genótipo , New South Wales , Fenótipo , Temperatura
16.
Glob Chang Biol ; 21(1): 459-72, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25378195

RESUMO

As rapid climate warming creates a mismatch between forest trees and their home environment, the ability of trees to cope with warming depends on their capacity to physiologically adjust to higher temperatures. In widespread species, individual trees in cooler home climates are hypothesized to more successfully acclimate to warming than their counterparts in warmer climates that may approach thermal limits. We tested this prediction with a climate-shift experiment in widely distributed Eucalyptus tereticornis and E. grandis using provenances originating along a ~2500 km latitudinal transect (15.5-38.0°S) in eastern Australia. We grew 21 provenances in conditions approximating summer temperatures at seed origin and warmed temperatures (+3.5 °C) using a series of climate-controlled glasshouse bays. The effects of +3.5 °C warming strongly depended on home climate. Cool-origin provenances responded to warming through an increase in photosynthetic capacity and total leaf area, leading to enhanced growth of 20-60%. Warm-origin provenances, however, responded to warming through a reduction in photosynthetic capacity and total leaf area, leading to reduced growth of approximately 10%. These results suggest that there is predictable intraspecific variation in the capacity of trees to respond to warming; cool-origin taxa are likely to benefit from warming, while warm-origin taxa may be negatively affected.


Assuntos
Aclimatação/fisiologia , Altitude , Eucalyptus/crescimento & desenvolvimento , Aquecimento Global , Análise de Variância , Demografia , Geografia , New South Wales , Fotossíntese/fisiologia , Especificidade da Espécie
17.
Sci Rep ; 14(1): 8735, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627432

RESUMO

In urban areas, diverse and complex habitats for biodiversity are often lacking. This lack of diversity not only compromises essential ecological processes, such as pollination and nutrient cycling, but also diminishes the resilience of urban ecosystems to pests and diseases. To enhance urban biodiversity, a possible solution is to integrate shrubs alongside trees, thereby increasing the overall amount of vegetation, structural complexity and the associated resource diversity. Here, using a common garden experiment involving a variety of trees and shrubs planted alone and in combination, we evaluate how canopy-associated invertebrate assemblages are influenced by vegetation type. In particular, we test whether the presence of shrubs, alone or with trees, results in increased abundance and taxonomic richness of invertebrates, compared to trees on their own. We found that the overall abundance of invertebrates, and that of specific functional groups (e.g., herbivores, pollinators, detritivores), was higher on shrubs, compared to trees, and when trees and shrubs were planted in combination (relative to trees on their own). Our results suggest that planting shrub and tree species with wide and dense crowns can increase the associated abundance and taxonomic and functional group richness of invertebrate communities. Overall, our findings indicate that urban planning would benefit from incorporating shrubs alongside urban trees to maximise invertebrate abundance, diversity and function in urban landscapes.


Assuntos
Biodiversidade , Ecossistema , Animais , Árvores , Plantas , Invertebrados
18.
BMC Ecol ; 13: 8, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-23497206

RESUMO

BACKGROUND: With high quantity and quality data production and low cost, next generation sequencing has the potential to provide new opportunities for plant phylogeographic studies on single and multiple species. Here we present an approach for in silicio chloroplast DNA assembly and single nucleotide polymorphism detection from short-read shotgun sequencing. The approach is simple and effective and can be implemented using standard bioinformatic tools. RESULTS: The chloroplast genome of Toona ciliata (Meliaceae), 159,514 base pairs long, was assembled from shotgun sequencing on the Illumina platform using de novo assembly of contigs. To evaluate its practicality, value and quality, we compared the short read assembly with an assembly completed using 454 data obtained after chloroplast DNA isolation. Sanger sequence verifications indicated that the Illumina dataset outperformed the longer read 454 data. Pooling of several individuals during preparation of the shotgun library enabled detection of informative chloroplast SNP markers. Following validation, we used the identified SNPs for a preliminary phylogeographic study of T. ciliata in Australia and to confirm low diversity across the distribution. CONCLUSIONS: Our approach provides a simple method for construction of whole chloroplast genomes from shotgun sequencing of whole genomic DNA using short-read data and no available closely related reference genome (e.g. from the same species or genus). The high coverage of Illumina sequence data also renders this method appropriate for multiplexing and SNP discovery and therefore a useful approach for landscape level studies of evolutionary ecology.


Assuntos
Genoma de Cloroplastos , Meliaceae/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Austrália , Biologia Computacional , DNA de Cloroplastos/genética , DNA de Plantas/genética , Dados de Sequência Molecular , Filogeografia , Árvores/genética
19.
Plant Soil ; 483(1-2): 47-70, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36211803

RESUMO

Background and aims: Field surveys across known populations of the Endangered Persoonia hirsuta (Proteaceae) in 2019 suggested the soil environment may be associated with dieback in this species. To explore how characteristics of the soil environment (e.g., pathogens, nutrients, soil microbes) relate to dieback, a soil bioassay (Experiment 1) was conducted using field soils from two dieback effected P. hirsuta populations. Additionally, a nitrogen addition experiment (Experiment 2) was conducted to explore how the addition of soil nitrogen impacts dieback. Methods: The field soils were baited for pathogens, and soil physiochemical and microbial community characteristics were assessed and related to dieback among plants in the field and nursery-grown plants inoculated with the same field soils. Roots from inoculated plants were harvested to confirm the presence of soil pathogens and root-associated endophytes. Using these isolates, a dual culture antagonism assay was performed to examine competition among these microbes and identify candidate pathogens or pathogen antagonists. Results: Dieback among plants in the field and Experiment 1 was associated with soil physiochemical properties (nitrogen and potassium), and soil microbes were identified as significant indicators of healthy and dieback-affected plants. Plants in Experiment 2 exhibited greater dieback when treated with elevated nitrogen. Additionally, post-harvest culturing identified fungi and other soil pathogens, some of which exhibited antagonistic behavior. Conclusion: This study identified candidate fungi and soil physiochemical properties associated with observed dieback and dieback resistance in an Endangered shrub and provides groundwork for further exploring what drives dieback and how it can be managed to promote the conservation of wild populations. Supplementary Information: The online version contains supplementary material available at 10.1007/s11104-022-05724-7.

20.
Plant Environ Interact ; 4(3): 146-162, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37362420

RESUMO

Climate change is shifting temperatures from historical patterns, globally impacting forest composition and resilience. Seed germination is temperature-sensitive, making the persistence of populations and colonization of available habitats vulnerable to warming. This study assessed germination response to temperature in foundation trees in south-western Australia's Mediterranean-type climate forests (Eucalyptus marginata (jarrah) and Corymbia calophylla (marri)) to estimate the thermal niche and vulnerability among populations. Seeds from the species' entire distribution were collected from 12 co-occurring populations. Germination thermal niche was investigated using a thermal gradient plate (5-40°C). Five constant temperatures between 9 and 33°C were used to test how the germination niche (1) differs between species, (2) varies among populations, and (3) relates to the climate of origin. Germination response differed among species; jarrah had a lower optimal temperature and thermal limit than marri (T o 15.3°C, 21.2°C; ED50 23.4°C, 31°C, respectively). The thermal limit for germination differed among populations within both species, yet only marri showed evidence for adaptation to thermal origins. While marri has the capacity for germination at higher thermal temperatures, jarrah is more vulnerable to global warming exceeding safety margins. This discrepancy is predicted to alter species distributions and forest composition in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA