RESUMO
In this study, we investigated the role of heat shock protein 70 (HSP70) in porcine epidemic diarrhoea virus (PEDV) replication. We found that PEDV infection induced strong HSP70 overexpression in the very early stage of infection. We also confirmed that HSP70 overexpression increased the speed of PEDV replication, resulting in the generation of more virions. In contrast, knockout of HSP70 in cells significantly downregulated PEDV protein expression, resulting in a significant reduction in PEDV replication. Most importantly, we confirmed that among the structural proteins of PEDV, membrane (M) proteins have this important role. We found that membrane proteins control cellular HSP70 expression in PEDV-infected cells. We confirmed HSP70/M complex formation by both immunoprecipitation and immunofluorescence assays. Additionally, PEDV M overexpression induced strong HSP70 expression. All our results clearly confirmed that in PEDV-infected cells, the M protein plays a very important role in PEDV replication in collaboration with HSP70.
Assuntos
Infecções por Coronavirus/veterinária , Proteínas M de Coronavírus/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Vírus da Diarreia Epidêmica Suína/fisiologia , Doenças dos Suínos/virologia , Replicação Viral , Animais , Infecções por Coronavirus/virologia , Biossíntese de Proteínas , Sus scrofa , SuínosRESUMO
Mortalin/mtHsp70/Grp75 (mot-2), a heat shock protein 70 family member, is an essential chaperone, enriched in cancers, and has been shown to possess pro-proliferative and anti-apoptosis functions. An allelic form of mouse mortalin (mot-1) that differs by two amino acids, M618V and G624R, in the C terminus substrate-binding domain has been reported. Furthermore, genome sequencing of mortalin from Parkinson disease patients identified two missense mutants, R126W and P509S. In the present study, we investigated the significance of these mutations in survival, proliferation, and oxidative stress tolerance in human cells. Using mot-1 and mot-2 recombinant proteins and specific antibodies, we performed screening to find their binding proteins and then identified ribosomal protein L-7 (RPL-7) and elongation factor-1 α (EF-1α), which differentially bind to mot-1 and mot-2, respectively. We demonstrate that mot-1, R126W, or P509S mutant (i) lacks mot-2 functions involved in carcinogenesis, such as p53 inactivation and hTERT/hnRNP-K (heterogeneous nuclear ribonucleoprotein K) activation; (ii) causes increased level of endogenous oxidative stress; (iii) results in decreased tolerance of cells to exogenous oxidative stress; and (iv) shows differential binding and impact on the RPL-7 and EF-1α proteins. These factors may mediate the transformation of longevity/pro-proliferative function of mot-2 to the premature aging/anti-proliferative effect of mutants, and hence may have significance in cellular aging, Parkinson disease pathology, and prognosis.
Assuntos
Proteínas de Choque Térmico HSP70/genética , Doença de Parkinson/genética , Mutação Puntual , Transporte Ativo do Núcleo Celular , Carcinogênese/genética , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/fisiologia , Humanos , Proteínas Mitocondriais/fisiologia , Mutação de Sentido IncorretoRESUMO
The Hsp70 family protein mortalin is an essential chaperone that is frequently enriched in cancer cells and exists in various subcellular sites, including the mitochondrion, plasma membrane, endoplasmic reticulum, and cytosol. Although the molecular mechanisms underlying its multiple subcellular localizations are not yet clear, their functional significance has been revealed by several studies. In this study, we examined the nuclear fractions of human cells and found that the malignantly transformed cells have more mortalin than the normal cells. We then generated a mortalin mutant that lacked a mitochondrial targeting signal peptide. It was largely localized in the nucleus, and, hence, is called nuclear mortalin (mot-N). Functional characterization of mot-N revealed that it efficiently protects cancer cells against endogenous and exogenous oxidative stress. Furthermore, compared with the full-length mortalin overexpressing cancer cells, mot-N derivatives showed increased malignant properties, including higher proliferation rate, colony forming efficacy, motility, and tumor forming capacity both in in vitro and in vivo assays. We demonstrate that mot-N promotes carcinogenesis and cancer cell metastasis by inactivation of tumor suppressor protein p53 functions and by interaction and functional activation of telomerase and heterogeneous ribonucleoprotein K (hnRNP-K) proteins.
Assuntos
Núcleo Celular/metabolismo , Transformação Celular Neoplásica/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Neoplasias/metabolismo , Animais , Western Blotting , Linhagem Celular , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Células HCT116 , Proteínas de Choque Térmico HSP70/genética , Células HeLa , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Humanos , Imuno-Histoquímica , Células MCF-7 , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutação , Metástase Neoplásica , Neoplasias/genética , Neoplasias/patologia , Estresse Oxidativo , Telomerase/genética , Telomerase/metabolismo , Transplante Heterólogo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismoRESUMO
MicroRNAs (miRNAs) are a class of noncoding small RNAs that act as negative regulators of gene expression. To identify miRNAs that may regulate human cell immortalization and carcinogenesis, we performed comparative miRNA array profiling of human normal and SV40-T antigen immortalized cells. We found that miR-296 was upregulated in immortalized cells that also had activation of telomerase. By an independent experiment on genomic analysis of cancer cells we found that chromosome region (20q13.32), where miR-296 is located, was amplified in 28/36 cell lines, and most of these showed enriched miR-296 expression. Overexpression of miR-296 in human cancer cells, with and without telomerase activity, had no effect on their telomerase function. Instead, it suppressed p53 function that is frequently downregulated during human cell immortalization and carcinogenesis. By monitoring the activity of a luciferase reporter connected to p53 and p21(WAF1) (p21) untranslated regions (UTRs), we demonstrate that miR-296 interacts with the p21-3'UTR, and the Hu binding site of p21-3'UTR was identified as a potential miR-296 target site. We demonstrate for the first time that miR-296 is frequently upregulated during immortalization of human cells and contributes to carcinogenesis by downregulation of p53-p21(WAF1) pathway.
Assuntos
Regiões 3' não Traduzidas , Inibidor de Quinase Dependente de Ciclina p21/genética , Regulação para Baixo , MicroRNAs/metabolismo , Neoplasias/genética , Linhagem Celular , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Inibidor de Quinase Dependente de Ciclina p21/antagonistas & inibidores , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Humanos , RNA Mensageiro/metabolismo , Proteína Supressora de Tumor p53/antagonistas & inibidores , Regulação para CimaRESUMO
This study investigated the effects of psychological skills training (PST) in shooters psychophysiologically using heart rate variability (HRV) in addition to psychological questionnaires and participant interviews. Five junior pistol shooters participated in an 8-week PST program consisting of a group session per week followed by individual counseling. Before and after PST, we collected electrocardiography data during rest, mental imagery of sport-related crisis situations, and successful performance, to analyze differences in HRV indices. Participants also responded to the Psychological Skills Inventory for Archery and Shooting (PSIAS), Intrinsic Motivation Inventory (IMI), Sports Anxiety Scale (SAS), and Trait Sport Confidence Inventory (TSCI). Results showed that the perceived competence (pre: 2.52 ± 0.95, post: 3.36 ± 0.73, p = 0.049) and trait sport confidence (pre: 4.94 ± 1.17, post: 6.60 ± 0.65, p = 0.049) significantly improved after PST. The analysis of HRV indicated that the ratio of low-frequency power to high-frequency power (LF/HF ratio) decreased significantly during imagery of crisis (pre: 3.4 ± 2.3, post: 1.014 ± 0.71, p = 0.038) and success (pre: 1.933 ± 0.917, post: 0.988 ± 0.572, p = 0.046), reflecting a strengthened autonomic nervous system's responsiveness to stress. Our findings illustrate that PST can help athletes better cope with psychologically disturbed situations during competition, by providing psychophysiological evidence through HRV changes.
RESUMO
In this study, we investigated the correlation between the mechanism involved in porcine epidemic diarrhea virus (PEDV) replication and autophagic flux. In this study, we found that as PEDV replicated, production of LC3-II was significantly induced up to 24 h post-infection (hpi). Interestingly, although there was significant production of LC3-II, greater p62 accumulation was simultaneously found. Pretreatment with rapamycin significantly induced PEDV replication, but autolysosome formation was reduced. These results were confirmed by the evaluation of ATG5/ATG12 and LAMP1/LAMP2. Taken together, we conclude that PEDV infection induces autophagosome formation but inhibits autolysosome formation during replication.
Assuntos
Autofagossomos/metabolismo , Vírus da Diarreia Epidêmica Suína , Animais , Autofagossomos/genética , Chlorocebus aethiops , Lisossomos/genética , Lisossomos/metabolismo , Macroautofagia , Vírus da Diarreia Epidêmica Suína/imunologia , Suínos , Células VeroRESUMO
Deletions in the spike gene of mouse hepatitis virus (MHV) produce several variants with diverse biological characteristics, highlighting the significance of the spike gene in viral pathogenesis. In this study, we characterized the JHM-X strain, which has a deletion in the hypervariable region (HVR) of the spike gene, compared with the cl-2 strain, which has a full spike gene. Cytopathic effects (CPEs) induced by the two strains revealed that the size of the CPE produced by cl-2 is much greater than that produced by JHM-X in delayed brain tumor (DBT) cells. Thus, this finding explains the greater fusion activity of cl-2 than JHM-X in cultured cells, and we speculate that the deletion region of the spike protein is involved in the fusion activity differences. In contrast with the fusion activity, a comparison of the virus growth kinetics revealed that the titer of JHM-X was approximately 100 times higher than that of cl-2. We found that the deletion region of the spike protein was involved in fusion activity differences, whereas cl-2 produced significantly higher luciferase activity than JHM-X upon similar expression levels of the spike protein. However, the reason behind the growth difference is still unknown. Overall, we discovered that deletion in the HVR of the spike gene could be involved in the fusion activity differences between the two strains.
Assuntos
Fusão Celular , Vírus da Hepatite Murina/patogenicidade , Glicoproteína da Espícula de Coronavírus/fisiologia , Animais , Linhagem Celular , Camundongos , Vírus da Hepatite Murina/genética , Vírus da Hepatite Murina/fisiologia , Deleção de Sequência , Glicoproteína da Espícula de Coronavírus/genéticaRESUMO
BACKGROUND: One of coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused coronavirus disease 2019 (COVID-19) pandemic and threatened worldwide. However, therapy for COVID-19 has rarely been proven to possess specific efficacy. As the virus relies on host metabolism for its survival, several studies have reported metabolic intervention by SARS-CoV-2. RESULTS: We investigated the coronavirus-metabolic hijacking using mouse hepatitis virus (MHV) as a surrogate for SARS-CoV-2. Based on the altered host metabolism by MHV infection, an increase of glycolysis with low mitochondrial metabolism, we tried to investigate possible therapeutic molecules which increase the TCA cycle. Endogenous metabolites and metabolic regulators were introduced to restrain viral replication by metabolic intervention. We observed that cells deprived of cellular energy nutrition with low glycolysis strongly suppress viral replication. Furthermore, viral replication was also significantly suppressed by electron transport chain inhibitors which exhaust cellular energy. Apart from glycolysis and ETC, pyruvate supplement suppressed viral replication by the TCA cycle induction. As the non-glucose metabolite, fatty acids supplement decreased viral replication via the TCA cycle. Additionally, as a highly possible therapeutic metabolite, nicotinamide riboside (NR) supplement, which activates the TCA cycle by supplying NAD+, substantially suppressed viral replication. CONCLUSIONS: This study suggests that metabolite-mediated TCA cycle activation suppresses replication of coronavirus and suggests that NR might play a role as a novel therapeutic metabolite for coronavirus.
RESUMO
Aging is a complex process accompanied by a decreased capacity of cells to cope with random damages induced by reactive oxygen species, the natural by-products of energy metabolism, leading to protein aggregation in various components of the cell. Chaperones are important players in the aging process as they prevent protein misfolding and aggregation. Small chaperones, such as small heat shock proteins, are involved in the refolding and/or disposal of protein aggregates, a feature of many age-associated diseases. In Drosophila melanogaster, mitochondrial Hsp22 (DmHsp22), is localized in the mitochondrial matrix and is preferentially up-regulated during aging. Its overexpression results in an extension of life span (>30%) (Morrow, G., Samson, M., Michaud, S., and Tanguay, R. M. (2004) FASEB J. 18, 598-599 and Morrow, G., Battistini, S., Zhang, P., and Tanguay, R. M. (2004) J. Biol. Chem. 279, 43382-43385). Long lived flies expressing Hsp22 also have an increased resistance to oxidative stress and maintain locomotor activity longer. In the present study, the cross-species effects of Hsp22 expression were tested. DmHsp22 was found to be functionally active in human cells. It extended the life span of normal fibroblasts, slowing the aging process as evidenced by a lower level of the senescence associated beta-galactosidase. DmHsp22 expression in human cancer cells increased their malignant properties including anchorage-independent growth, tumor formation in nude mice, and resistance to a variety of anticancer drugs. We report that the DmHsp22 interacts and inactivates wild type tumor suppressor protein p53, which may be one possible way of its functioning in human cells.
Assuntos
Proliferação de Células , Proteínas de Drosophila/fisiologia , Proteínas de Choque Térmico/fisiologia , Proteínas Mitocondriais/fisiologia , Animais , Antineoplásicos/farmacologia , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Senescência Celular/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Etoposídeo/farmacologia , Feminino , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Nocodazol/farmacologia , Paclitaxel/farmacologia , Transfecção , Transplante Heterólogo , Proteína Supressora de Tumor p53/metabolismoRESUMO
The structure of 1.7 nm Pt nanoparticles is investigated using x-ray diffraction (XRD) measurements and density functional theory (DFT) calculations. Two types of particles are compared, those made by solution chemistry which are capped either by thiol or amine ligands, and dendrimer encapsulated particles (DENs) which do not have capping ligands. All particles were dried before analyzing their structure. Pair distribution function (PDF) data from XRD measurements show that the ligand-capped particles are more disordered than the DENs. To determine the structure of the particles and the nature of the ligand-induced disorder, we use a hybrid reverse Monte Carlo approach. A weighted average of the calculated binding energy of the particles and a goodness-of-fit parameter to the PDF data is taken as the object function, which is minimized to determine the optimal structure. A scan over different weights gives the set of pareto optimal structures, which show how well simultaneous agreement can be reached to both experiment and theory. Using an embedded atom potential to sample configuration space and DFT to refine the optimal structures, we show that the DEN structure is most consistent with a face centered cubic lattice of truncated octahedral shape. The disorder induced by the capping ligands is consistent with surface relaxation of the particle rather than disorder of the crystal structure.
RESUMO
PURPOSE: To evaluate the causes and frequency of the squeaking sound in ceramic-on-ceramic THA. MATERIALS AND METHODS: This study included 61 hips of 50 patients who underwent ceramic-on-ceramic THA in our hospital from March 1999 to April 2005. The average age at the time of operation was 57.6 years. The average duration of follow-up was 69.5 months. Three different acetabular components were used: Osteonics (Stryker, USA: 24 cases), Bicontact (Aesculap, Germany: 27 cases) and ABG (Howmedica, UK: 10 cases). RESULTS: Fourteen (22.9%) of the 61 cases had a squeaking sound, and this sound started a mean of 47.57 months after the operation. Except in one case, the squeaking sound remained until the last follow-up. There was no difference in acetabular component position between the squeaking and nonsqueaking groups. The squeaking sound was found to be related to the BMI (body mass index) and cup design. It occurred frequently in patients with high BMI who had received a total hip arthroplasty using an Osteonics cup. Among 11 of the patients, squeaking occurred while squatting, and in 3 patients while walking. Six patients suffered from mild restrictions on their activities of daily living, and 8 had more than moderate restrictions with squeaking sounds. CONCLUSION: A squeaking sound in THA using ceramic-on-ceramic surfaces is not a rare complication, and often affects the patient's behavior.
Assuntos
Artroplastia de Quadril/instrumentação , Cerâmica , Prótese de Quadril , Osteoartrite do Quadril/cirurgia , Amplitude de Movimento Articular/fisiologia , Adulto , Idoso , Análise de Falha de Equipamento , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite do Quadril/fisiopatologia , Desenho de Prótese , Falha de Prótese , Estudos Retrospectivos , Propriedades de Superfície , Adulto JovemRESUMO
Because the porcine epidemic diarrhea virus (PEDV) is a critical pathogen resulting in rapid spreading and high mortality rates in piglets, understanding of the transmission route of PEDV is required for its controlling. Until now, it is well known that PEDV transmission routes are various, such as fecal-oral route, contaminated feed, farmworkers, and transport vehicles. However, unlike several swine-infected viruses, there were no reports of vertical transmission with PEDV. In our study, we confirmed possible vertical transmission of PEDV. We confirmed PEDV in piglet testicles and umbilical cords from PEDV-positive sow. These findings are direct evidence that PEDV is transmitted vertically through placenta. This is the first report on transplacental transmission of PEDV and will be very important information for controlling PED.
RESUMO
Highly pathogenic avian influenza (HPAI) virus is a causative agent of systemic disease in poultry, characterized by high mortality. Rapid diagnosis is crucial for the control of HPAI. In this study, we aimed to develop a differential diagnostic method that can distinguish HPAI from low pathogenic avian influenza (LPAI) viruses using dual split proteins (DSPs). DSPs are chimeras of an enzymatic split, Renilla luciferase (RL), and a non-enzymatic split green fluorescent protein (GFP). Nanoparticles expressing DSPs, sialic acid, and/or transmembrane serine protease 2 (TMPRSS2) were generated, and RL activity was determined in the presence of HPAI or LPAI pseudotyped viruses. The RL activity of nanoparticles containing both DSPs was approximately 2 × 106 RLU, indicating that DSPs can be successfully incorporated into nanoparticles. The RL activity of nanoparticles containing half of the DSPs was around 5 × 101 RLU. When nanoparticles containing half of the DSPs were incubated with HPAI pseudotyped viruses at low pH, RL activity was increased up to 1 × 103 RLU. However, LPAI pseudotyped viruses produced RL activity only in the presence of proteases (trypsin or TMPRSS2), and the average RL activity was around 7 × 102 RLU. We confirmed that nanoparticle fusion assay also diagnoses authentic viruses with specificity of 100% and sensitivity of 91.67%. The data indicated that the developed method distinguished HPAI and LPAI, and suggested that the diagnosis using DSPs could be used for the development of differential diagnostic kits for HPAI after further optimization.
Assuntos
Aves/virologia , Vírus da Influenza A/patogenicidade , Influenza Aviária/diagnóstico , Luminescência , Medições Luminescentes/métodos , Nanopartículas/química , Animais , Animais Selvagens/virologia , Diagnóstico Diferencial , Fezes/virologia , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/virologia , Sensibilidade e EspecificidadeRESUMO
Pgrmc1 is a non-canonical progesterone receptor related to the lethality of various types of cancer. PGRMC1 has been reported to exist in co-precipitated protein complexes with epidermal growth factor receptor (EGFR), which is considered a useful therapeutic target in hepatocellular carcinoma (HCC). Here, we investigated whether Pgrmc1 is involved in HCC progression. In clinical datasets, PGRMC1 transcription level was positively correlated with EGFR levels; importantly, PGRMC1 level was inversely correlated with the survival duration of HCC patients. In a diethylnitrosamine (DEN)-induced murine model of HCC, the global ablation of Pgrmc1 suppressed the development of HCC and prolonged the survival of HCC-bearing mice. We further found that increases in hepatocyte death and suppression of compensatory proliferation in the livers of DEN-injured Pgrmc1-null mice were concomitant with decreases in nuclear factor κB (NF-κB)-dependent production of interleukin-6 (IL-6). Indeed, silencing of Pgrmc1 in murine macrophages led to reductions in NF-κB activity and IL-6 production. We found that the anti-proinflammatory effect of Pgrmc1 loss was mediated by reductions in EGFR level and its effect was not observed after exposure of the EGFR inhibitor erlotinib. This study reveals a novel cooperative role of Pgrmc1 in supporting the EGFR-mediated development of hepatocellular carcinoma, implying that pharmacological suppression of Pgrmc1 may be a useful strategy in HCC treatment.
RESUMO
BACKGROUND: Adeno-oncolytic (Adon) viruses offer an effective cancer therapeutic tool with several advantages, including wide host cell permeability, high transduction efficiency, safety, tumor selectivity, non-invasiveness, high genetic modifiability and high level of expression of the integrated transgenes. Armed Adon viruses in which the therapeutic efficacy of virus is enhanced by their coupling with cytotoxic, anti-angiogenic or anti-vascular gene products have gained importance because they engage additional mechanisms for tumor cell killing. In the present study, we selected mortalin, a stress chaperone that is tightly involved in human carcinogenesis, constructed a mortalin-targeting Adon (mot-Adon) virus and examined its therapeutic potential both in vitro and in vivo. METHODS: Mortalin-targeting plasmid and viral vectors that harbored mortalin-specific small interfering RNA sequences were constructed. The therapeutic value of these vectors was investigated in vitro and in vivo by cell culture and nude mice tumor models. RESULTS: We demonstrate that the mot-Adon virus has selective cytotoxicity for human cancer cells in vitro. Retrovirus-mediated overexpression of mortalin protected the cells against mot-Adon virus, confirming that mortalin silencing was the real cause of cancer cell death. Although mortalin overexpression enhanced malignant properties of cancer cells in breast xenograft models, mot-Adon virus elicited an enhanced anti-tumor effect. Immunohistochemical examination of the tumors showed that the mot-Adon virus caused enhanced apoptosis (mediated by reactivation of p53) and suppression of microvessel formation. CONCLUSIONS: Mortalin is up-regulated in a large variety of tumors and hence mot-Adon virus is proposed as a candidate cancer therapeutic agent.
Assuntos
Inibidores da Angiogênese/metabolismo , Apoptose , Proteínas de Choque Térmico HSP70/metabolismo , Neoplasias/irrigação sanguínea , Neoplasias/terapia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/metabolismo , Adenoviridae/metabolismo , Animais , Linhagem Celular Tumoral , Citoproteção , Humanos , Camundongos , Neoplasias/patologia , RNA Interferente Pequeno/metabolismo , Transfecção , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
A growing modern-day concern is fine dust air pollution that contains heavy metals and ammonium ions (NH4+) from industrial and agricultural waste sources, respectively. In the current study, the development of an innovative and effective technique for real-time, quantitative monitoring of toxic fine dust components using plasma emission spectroscopy is presented as a complement to emergency preparedness plans aimed at reducing dust pollution. A novel spark-induced plasma spectroscopic (SIPS) device that can control the frequency and magnitude of plasma was developed for the toxic pollutants in this work. SIPS utilizes an electrical discharge from a high voltage at a low current to produce plasma when the applied voltage is higher than the ambient voltage surrounding the electrodes. The detection limit of this setup was enhanced by a factor of 4.3 over laser-induced plasma spectroscopy (LIPS). This compact sensing device was used in combination with a new quantitative analytical method to measure the concentration of heavy metals and ammonia molecules in fine dust air pollution. By integrating the time-resolved plasma emission signals that were based on the plasma continuum decay time of each element, quantitative measurements of the minute changes in composition of 0.1 µg/m3 were conducted. The findings of this study could inspire future research on the use of SIPS for monitoring airborne fine dust pollutants with better sensitivity in real-time via a new quantitative analytical method.
Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Poeira/análise , Poluentes Ambientais , Indústrias , Metais Pesados/análise , Análise EspectralRESUMO
The degradation of thermal properties due to ageing such as burning rate and exothermic heat release are unsolved issues faced during a long-term storage of the pyrotechnic substances. Accordingly, we employed various non-calorimetric methods to investigate the thermal performance of pyrotechnic delay, which is exposed to various moisture-rich conditions at extended durations. The chemical and physical changes in the compositions of a pyrotechnic delay comprised of metal fuel (Zr-Ni alloy) and oxidants (KClO4, BaCrO4) are analysed for four different relative humidity levels using X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscope and laser-induced breakdown spectroscopy. The calculations using the NASA Chemical Equilibrium with Applications (CEA) software indicated that the heat of reaction for the components stored under the moisture-rich conditions is reduced by more than 50%. Unlike the conventional calorimetric analysis, the present non-calorimetric approach provided the compositional changes as well as the cause and effect of the relevant ageing process of pyrotechnic delay.
RESUMO
Withaferin-A (Wi-A) has been shown to possess anticancer activity. Molecular mechanism(s) of its action has not been fully resolved. We recruited low dose of Wi-A that caused slow growth arrest in cancer cells and was relatively safe for normal cells. Consistently, we detected nuclear translocation of nuclear factor kappa B (NFκB) and activation of p38MAPK selectively in cancer cells. Bioinformatics analyses revealed that Wi-A did not disrupt IKKα/IKKß-Nemo complex that regulates NFκB activity. However, it caused moderate change in the conformation of IKKß-Nemo interacting domain. Experimental data revealed increased level of phosphorylated IκBα in Wi-A-treated cells, suggesting an activation of IKK complex that was supported by nuclear translocation of NFκB. Molecular docking analysis showed that Wi-A did not disrupt; however, decreased the stability of the NFκB-DNA complex. It was supported by downregulation of DNA-binding and transcriptional activities of NFκB. Further analysis revealed that Wi-A caused upregulation of CARF (collaborator of ARF) demonstrating an activation of DNA damage oxidative stress response in both cancer and normal cells. In line with this, upregulation of p21WAF1, p16INK4A, and hypophosphorylated pRB and induction of senescence were observed demonstrating that Wi-A-induced senescence is mediated by multiple pathways in which CARF-mediated DNA damage and oxidative stress play a major role.
Assuntos
Senescência Celular/efeitos dos fármacos , Biologia Computacional/métodos , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/metabolismo , NF-kappa B/genética , Fatores de Transcrição/genética , Vitanolídeos/farmacologia , Apoptose , Western Blotting , Sobrevivência Celular , Dano ao DNA , DNA de Neoplasias/genética , Proteínas de Ligação a DNA/biossíntese , Humanos , Imunoprecipitação , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Simulação de Acoplamento Molecular , NF-kappa B/biossíntese , Transdução de Sinais , Fatores de Transcrição/biossíntese , Células Tumorais CultivadasRESUMO
We developed a novel fluorescent core skeleton, 1,2-dihydropyrrolo[3,4-beta]indolizin-3-one, by complexity-generating one-pot reactions through 1,3-dipolar cyclization followed by oxidative aromatization. This fluorescent core skeleton can accommodate various wavelengths of emission maxima by changing the electronic properties of substituents, which was postulated by computational studies. The full-color-tunable emission maxima were achieved with a single core skeleton by changing the substituents using the combinatorial approach. These novel fluorophores have excellent photophysical and photochemical properties: moderate to excellent quantum yields, resistance to the photobleaching, pH-independent fluorescence, large Stokes shifts, druglike lipophilicity for membrane permeability, etc. Further, we successfully demonstrated the bioapplication of fluorophores B1 and B5 in the immunofluorescence for visualizing cellular compartments of HeLa cells.
Assuntos
Corantes Fluorescentes/química , Indolizinas/química , Pirróis/química , Técnicas de Química Combinatória/métodos , Corantes Fluorescentes/síntese química , Células HeLa , Humanos , Imuno-Histoquímica , Indolizinas/síntese química , Fotoquímica , Pirróis/síntese química , Espectrometria de FluorescênciaRESUMO
Porcine epidemic diarrhea virus (PEDV) infects pigs and causes an enteric disease that is characterized by vomiting and watery diarrhea. PEDV outbreaks have a tremendous financial impact on the worldwide pork industry. In South Korea, the incidence of PEDV has continued despite nationwide use of attenuated and inactivated vaccines, raising questions regarding the current vaccines' efficacy and the need for new vaccine development. In the present study, we isolated a new Korean PEDV epidemic strain, PED-CUP-B2014, in Vero cells. Phylogenetic analysis of the spike gene demonstrated that the PED-CUP-B2014 belongs in genogroup G2b and is close to PEDVs currently circulating in many countries including the United States, and is distinct from many current vaccine strains. Upon serial passages into Vero cells, PED-CUP-B2014 adapted to Vero cells, which was evidenced as higher virus growth in Vero cells and confirmed lower virulence in suckling piglets. The administration of the inactivated 65-passaged PED-CUP-B2014 to sows greatly increased the survival rate of their offspring and significantly reduced diarrhea severity after PEDV challenge. Higher serum/colostrum PEDV-specific antibodies and higher neutralizing titers were shown in sows vaccinated with PED-CUP-B2014 compared to unvaccinated sows or sows administered commercial PEDV vaccine. Altogether, our data demonstrated that the newly isolated PEDV strain conferred critical passive immune protection to pigs against epidemic PEDV infection.