Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 38(23): 5415-5428, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29769266

RESUMO

BDNF is a growth factor with important roles in the nervous system in both physiological and pathological conditions, but the mechanisms controlling its secretion are not completely understood. Here, we show that ARMS/Kidins220 negatively regulates BDNF secretion in neurons from the CNS and PNS. Downregulation of the ARMS/Kidins220 protein in the adult mouse brain increases regulated BDNF secretion, leading to its accumulation in the striatum. Interestingly, two mouse models of Huntington's disease (HD) showed increased levels of ARMS/Kidins220 in the hippocampus and regulated BDNF secretion deficits. Importantly, reduction of ARMS/Kidins220 in hippocampal slices from HD mice reversed the impaired regulated BDNF release. Moreover, there are increased levels of ARMS/Kidins220 in the hippocampus and PFC of patients with HD. ARMS/Kidins220 regulates Synaptotagmin-IV levels, which has been previously observed to modulate BDNF secretion. These data indicate that ARMS/Kidins220 controls the regulated secretion of BDNF and might play a crucial role in the pathogenesis of HD.SIGNIFICANCE STATEMENT BDNF is an important growth factor that plays a fundamental role in the correct functioning of the CNS. The secretion of BDNF must be properly controlled to exert its functions, but the proteins regulating its release are not completely known. Using neuronal cultures and a new conditional mouse to modulate ARMS/Kidins220 protein, we report that ARMS/Kidins220 negatively regulates BDNF secretion. Moreover, ARMS/Kidins220 is overexpressed in two mouse models of Huntington's disease (HD), causing an impaired regulation of BDNF secretion. Furthermore, ARMS/Kidins220 levels are increased in brain samples from HD patients. Future studies should address whether ARMS/Kidins220 has any function on the pathophysiology of HD.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Encéfalo/metabolismo , Doença de Huntington/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sinaptotagminas/metabolismo , Adulto , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade
2.
Bioorg Med Chem ; 25(7): 2260-2265, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28284867

RESUMO

Glycosylation by simple sugars is a drug discovery alternative that has been explored with varying success for enhancing the potency and bioavailability of opioid peptides. Long ago we described two O-glycosides having either ß-Glucose and ß-Galactose of (d-Met2, Pro5)-enkephalinamide showing one of the highest antinociceptive activities known. Here, we report the resynthesis of these two analogs and the preparation of three novel neoglycopeptide derivatives (α-Mannose, ß-Lactose and ß-Cellobiose). Binding studies to cloned zebrafish opioid receptors showed very small differences of affinity between the parent compound and the five glycopeptides thus suggesting that the nature of the carbohydrate moiety plays a minor role in determining the binding mode. Indeed, NMR conformational studies, combined with molecular mechanics calculations, indicated that all glycopeptides present the same major conformation either in solution or membrane-like environment. The evidences provided here highlight the relevance for in vivo activity of the conjugating bond between the peptide and sugar moieties in opioid glycopeptides.


Assuntos
Carboidratos/química , Encefalinas/química , Glicopeptídeos/metabolismo , Receptores Opioides/metabolismo , Animais , Glicopeptídeos/química , Glicosilação , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Conformação Proteica , Relação Estrutura-Atividade
3.
Int J Mol Sci ; 18(3)2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28335430

RESUMO

Ubiquitination is a reversible post-translational modification involved in a plethora of different physiological functions. Among the substrates that are ubiquitinated, neurotrophin receptors (TrkA, TrkB, TrkC, and p75NTR) have been studied recently. TrkA is the most studied receptor in terms of its ubiquitination, and different E3 ubiquitin ligases and deubiquitinases have been implicated in its ubiquitination, whereas not much is known about the other neurotrophin receptors aside from their ubiquitination. Additional studies are needed that focus on the ubiquitination of TrkB, TrkC, and p75NTR in order to further understand the role of ubiquitination in their physiological and pathological functions. Here we review what is currently known regarding the ubiquitination of neurotrophin receptors and its physiological and pathological relevance.


Assuntos
Receptores de Fator de Crescimento Neural/metabolismo , Ubiquitinação , Animais , Humanos , Receptores de Fator de Crescimento Neural/genética
4.
Pain ; 164(3): 563-576, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35916735

RESUMO

ABSTRACT: Pain is an alarm mechanism to prevent body damage in response to noxious stimuli. The nerve growth factor (NGF)/TrkA axis plays an essential role as pain mediator, and several clinical trials using antibodies against NGF have yielded promising results, but side effects have precluded their clinical approval. A better understanding of the mechanism of NGF/TrkA-mediated nociception is needed. Here, we find that ARMS/Kidins220, a scaffold protein for Trk receptors, is a modulator of nociception. Male mice, with ARMS/Kidins220 reduction exclusively in TrkA-expressing cells, displayed hyperalgesia to heat, inflammatory, and capsaicin stimuli, but not to cold or mechanical stimuli. Simultaneous deletion of brain-derived neurotrophic factor (BDNF) reversed the effects of ARMS/Kidins220 knock down alone. Mechanistically, ARMS/Kidins220 levels are reduced in vitro and in vivo in response to capsaicin through calpains, and this reduction leads to enhanced regulated BDNF secretion from dorsal root ganglion. Altogether, these data indicate that ARMS/Kidins220 protein levels have a role as a pain modulator in the NGF/TrkA axis regulating BDNF secretion.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Fator de Crescimento Neural , Camundongos , Masculino , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator de Crescimento Neural/metabolismo , Nociceptividade , Capsaicina/farmacologia , Proteínas de Membrana/metabolismo , Dor/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA