Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 28(Pt 4): 1059-1068, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34212869

RESUMO

A report on a four-axis ultra-high-stability manipulator developed for use at the Veritas and Species RIXS beamlines at MAX IV Laboratory, Lund, Sweden, is presented. The manipulator consists of a compact, light-weight X-Y table with a stiffened Z tower carrying a platform with a rotary seal to which a manipulator rod holding the sample can be attached. Its design parameters have been optimized to achieve high eigen-frequencies via a light-weight yet stiff construction, to absorb forces without deformations, provide a low center of gravity, and have a compact footprint without compromising access to the manipulator rod. The manipulator system can house a multitude of different, easily exchangeable, manipulator rods that can be tailor-made for specific experimental requirements without having to rebuild the entire sample positioning system. It is shown that the manipulator has its lowest eigen-frequency at 48.5 Hz and that long-term stability is in the few tens of nanometres. Position accuracy is shown to be better than 100 nm. Angular accuracy is in the 500 nrad range with a long-term stability of a few hundred nanoradians.

2.
J Synchrotron Radiat ; 28(Pt 2): 588-601, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33650571

RESUMO

The SPECIES beamline has been transferred to the new 1.5 GeV storage ring at the MAX IV Laboratory. Several improvements have been made to the beamline and its endstations during the transfer. Together the Ambient Pressure X-ray Photoelectron Spectroscopy and Resonant Inelastic X-ray Scattering endstations are capable of conducting photoelectron spectroscopy in elevated pressure regimes with enhanced time-resolution and flux and X-ray scattering experiments with improved resolution and flux. Both endstations offer a unique capability for experiments at low photon energies in the vacuum ultraviolet and soft X-ray range. In this paper, the upgrades on the endstations and current performance of the beamline are reported.

3.
J Chem Phys ; 154(21): 214304, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34240997

RESUMO

A theoretical and experimental study of the gas phase and liquid acetic acid based on resonant inelastic x-ray scattering (RIXS) spectroscopy is presented. We combine and compare different levels of theory for an isolated molecule for a comprehensive analysis, including electronic and vibrational degrees of freedom. The excitation energy scan over the oxygen K-edge absorption reveals nuclear dynamic effects in the core-excited and final electronic states. The theoretical simulations for the monomer and two different forms of the dimer are compared against high-resolution experimental data for pure liquid acetic acid. We show that the theoretical model based on a dimer describes the hydrogen bond formation in the liquid phase well and that this bond formation sufficiently alters the RIXS spectra, allowing us to trace these effects directly from the experiment. Multimode vibrational dynamics is accounted for in our simulations by using a hybrid time-dependent stationary approach for the quantum nuclear wave packet simulations, showing the important role it plays in RIXS.

4.
J Synchrotron Radiat ; 27(Pt 2): 262-271, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32153265

RESUMO

With the introduction of the multi-bend achromats in the new fourth-generation storage rings the emittance has decreased by an order of magnitude resulting in increased brightness. However, the higher brightness comes with smaller beam sizes and narrower radiation cones. As a consequence, the requirements on mechanical stability regarding the beamline components increases. Here an innovative five-axis parallel kinematic mirror unit for use with soft X-ray beamlines using off-axis grazing-incidence optics is presented. Using simulations and measurements from the HIPPIE beamline at the MAX IV Laboratory it is shown that it has no Eigen frequencies below 90 Hz. Its positioning accuracy is better than 25 nm linearly and 17-35 µrad angularly depending on the mirror chamber dimensions.

5.
J Synchrotron Radiat ; 24(Pt 1): 344-353, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28009577

RESUMO

SPECIES is an undulator-based soft X-ray beamline that replaced the old I511 beamline at the MAX II storage ring. SPECIES is aimed at high-resolution ambient-pressure X-ray photoelectron spectroscopy (APXPS), near-edge X-ray absorption fine-structure (NEXAFS), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS) experiments. The beamline has two branches that use a common elliptically polarizing undulator and monochromator. The beam is switched between the two branches by changing the focusing optics after the monochromator. Both branches have separate exit slits, refocusing optics and dedicated permanent endstations. This allows very fast switching between two types of experiments and offers a unique combination of the surface-sensitive XPS and bulk-sensitive RIXS techniques both in UHV and at elevated ambient-pressure conditions on a single beamline. Another unique property of the beamline is that it reaches energies down to approximately 27 eV, which is not obtainable on other current APXPS beamlines. This allows, for instance, valence band studies under ambient-pressure conditions. In this article the main properties and performance of the beamline are presented, together with selected showcase experiments performed on the new setup.

6.
Faraday Discuss ; 194: 305-324, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27711899

RESUMO

With the invention of femtosecond X-ray free-electron lasers (XFELs), studies of light-induced chemical reaction dynamics and structural dynamics reach a new era, allowing for time-resolved X-ray diffraction and spectroscopy. To ultimately probe coherent electron and nuclear dynamics on their natural time and length scales, coherent nonlinear X-ray spectroscopy schemes have been proposed. In this contribution, we want to critically assess the experimental realisation of nonlinear X-ray spectroscopy at current-day XFEL sources, by presenting first experimental attempts to demonstrate stimulated resonant X-ray Raman scattering in molecular gas targets.

7.
Sci Adv ; 10(7): eadk3114, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38354244

RESUMO

Resonant inelastic x-ray scattering (RIXS) is a major method for investigation of electronic structure and dynamics, with applications ranging from basic atomic physics to materials science. In RIXS applied to inversion-symmetric systems, it has generally been accepted that strict parity selectivity applies in the sub-kilo-electron volt region. In contrast, we show that the parity selection rule is violated in the RIXS spectra of the free homonuclear diatomic O2 molecule. By analyzing the spectral dependence on scattering angle, we demonstrate that the violation is due to the phase difference in coherent scattering at the two atomic sites, in analogy with Young's double-slit experiment. The result also implies that the interpretation of x-ray absorption spectra for inversion symmetric molecules in this energy range must be revised.

8.
J Phys Condens Matter ; 34(32)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35640576

RESUMO

X-ray absorption and resonant inelastic x-ray scattering spectra of LaPt2Si2single crystal at the Si 2pand La 4dedges are presented. The data are interpreted in terms of density functional theory, showing that the Si spectra can be described in terms of Sisanddlocal partial density of states (LPDOS), and the La spectra are due to quasi-atomic local 4fexcitations. Calculations show that Ptd-LPDOS dominates the occupied states, and a sharp localized Lafstate is found in the unoccupied states, in line with the observations.

9.
Sci Rep ; 11(1): 4098, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602972

RESUMO

Quenching of vibrational excitations in resonant inelastic X-ray scattering (RIXS) spectra of liquid acetic acid is observed. At the oxygen core resonance associated with localized excitations at the O-H bond, the spectra lack the typical progression of vibrational excitations observed in RIXS spectra of comparable systems. We interpret this phenomenon as due to strong rehybridization of the unoccupied molecular orbitals as a result of hydrogen bonding, which however cannot be observed in x-ray absorption but only by means of RIXS. This allows us to address the molecular structure of the liquid, and to determine a lower limit for the average molecular chain length.

11.
Sci Rep ; 7: 20054, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26821751

RESUMO

Thermally driven chemistry as well as materials' functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future.

12.
Sci Rep ; 6: 20947, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26860458

RESUMO

The unique opportunity to study and control electron-nuclear quantum dynamics in coupled potentials offered by the resonant inelastic X-ray scattering (RIXS) technique is utilized to unravel an anomalously strong two-electron one-photon transition from core-excited to Rydberg final states in the CO molecule. High-resolution RIXS measurements of CO in the energy region of 12-14 eV are presented and analyzed by means of quantum simulations using the wave packet propagation formalism and ab initio calculations of potential energy curves and transition dipole moments. The very good overall agreement between the experimental results and the theoretical predictions allows an in-depth interpretation of the salient spectral features in terms of Coulomb mixing of "dark" with "bright" final states leading to an effective two-electron one-photon transition. The present work illustrates that the improved spectral resolution of RIXS spectra achievable today may call for more advanced theories than what has been used in the past.

13.
Phys Rev Lett ; 97(25): 253002, 2006 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-17280347

RESUMO

An influence of static magnetic fields on the fluorescence yield spectrum of He in the vicinity of the N = 2 thresholds has been observed. The experimental results are in excellent agreement with predictions based on multichannel quantum defect theory, and it is demonstrated that the Rydberg electron l mixing due to the diamagnetic interaction is essential for the description of the observed fluorescence yield intensity enhancement.

14.
Phys Rev Lett ; 96(4): 043002, 2006 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-16486817

RESUMO

A dramatic electric field dependence has been observed in the fluorescence yield spectrum of the doubly excited states in helium, where a rich phenomenology is encountered below the threshold. Fluorescence yields of certain states can be tuned to zero, while other dipole-forbidden states are significantly enhanced, for fields much weaker than 1 kV/cm. Using an R-matrix multichannel quantum defect theory, spherical-to-parabolic frame transformation method, we are able to reproduce the main features of the observed spectrum, and we discuss the qualitative behavior in terms of weak electric field mixing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA