Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34298887

RESUMO

Aquaporin water channels (AQPs) constitute a large family of transmembrane proteins present throughout all kingdoms of life. They play key roles in the flux of water and many solutes across the membranes. The AQP diversity, protein features, and biological functions of silver birch are still unknown. A genome analysis of Betula pendula identified 33 putative genes encoding full-length AQP sequences (BpeAQPs). They are grouped into five subfamilies, representing ten plasma membrane intrinsic proteins (PIPs), eight tonoplast intrinsic proteins (TIPs), eight NOD26-like intrinsic proteins (NIPs), four X intrinsic proteins (XIPs), and three small basic intrinsic proteins (SIPs). The BpeAQP gene structure is conserved within each subfamily, with exon numbers ranging from one to five. The predictions of the aromatic/arginine selectivity filter (ar/R), Froger's positions, specificity-determining positions, and 2D and 3D biochemical properties indicate noticeable transport specificities to various non-aqueous substrates between members and/or subfamilies. Nevertheless, overall, the BpePIPs display mostly hydrophilic ar/R selective filter and lining-pore residues, whereas the BpeTIP, BpeNIP, BpeSIP, and BpeXIP subfamilies mostly contain hydrophobic permeation signatures. Transcriptional expression analyses indicate that 23 BpeAQP genes are transcribed, including five organ-related expressions. Surprisingly, no significant transcriptional expression is monitored in leaves in response to cold stress (6 °C), although interesting trends can be distinguished and will be discussed, notably in relation to the plasticity of this pioneer species, B. pendula. The current study presents the first detailed genome-wide analysis of the AQP gene family in a Betulaceae species, and our results lay a foundation for a better understanding of the specific functions of the BpeAQP genes in the responses of the silver birch trees to cold stress.


Assuntos
Aquaporinas/metabolismo , Betula/genética , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Família Multigênica/genética , Éxons/genética , Perfilação da Expressão Gênica/métodos , Estudo de Associação Genômica Ampla/métodos , Interações Hidrofóbicas e Hidrofílicas , Filogenia , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Transcrição Gênica/genética
2.
PLoS One ; 19(5): e0300791, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38758965

RESUMO

Plant growth-promoting rhizobacteria (PGPR) applications have emerged as an ideal substitute for synthetic chemicals by their ability to improve plant nutrition and resistance against pathogens. In this study, we isolated fourteen root endophytes from healthy wheat roots cultivated in Tunisia. The isolates were identified based from their 16S rRNA gene sequences. They belonged to Bacillota and Pseudomonadota taxa. Fourteen strains were tested for their growth-promoting and defense-eliciting potentials on durum wheat under greenhouse conditions, and for their in vitro biocontrol power against Fusarium culmorum, an ascomycete responsible for seedling blight, foot and root rot, and head blight diseases of wheat. We found that all the strains improved shoot and/or root biomass accumulation, with Bacillus mojavensis, Paenibacillus peoriae and Variovorax paradoxus showing the strongest promoting effects. These physiological effects were correlated with the plant growth-promoting traits of the bacterial endophytes, which produced indole-related compounds, ammonia, and hydrogen cyanide (HCN), and solubilized phosphate and zinc. Likewise, plant defense accumulations were modulated lastingly and systematically in roots and leaves by all the strains. Testing in vitro antagonism against F. culmorum revealed an inhibition activity exceeding 40% for five strains: Bacillus cereus, Paenibacillus peoriae, Paenibacillus polymyxa, Pantoae agglomerans, and Pseudomonas aeruginosa. These strains exhibited significant inhibitory effects on F. culmorum mycelia growth, sporulation, and/or macroconidia germination. P. peoriae performed best, with total inhibition of sporulation and macroconidia germination. These finding highlight the effectiveness of root bacterial endophytes in promoting plant growth and resistance, and in controlling phytopathogens such as F. culmorum. This is the first report identifying 14 bacterial candidates as potential agents for the control of F. culmorum, of which Paenibacillus peoriae and/or its intracellular metabolites have potential for development as biopesticides.


Assuntos
Agentes de Controle Biológico , Endófitos , Fusarium , Doenças das Plantas , Raízes de Plantas , Triticum , Triticum/microbiologia , Triticum/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Tunísia , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/classificação , RNA Ribossômico 16S/genética
3.
Microorganisms ; 11(6)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37375014

RESUMO

Beneficial microorganisms, including members of the Trichoderma genus, are known for their ability to promote plant growth and disease resistance, as well as being alternatives to synthetic inputs in agriculture. In this study, 111 Trichoderma strains were isolated from the rhizospheric soil of Florence Aurore, an ancient wheat variety that was cultivated in an organic farming system in Tunisia. A preliminary ITS analysis allowed us to cluster these 111 isolates into three main groups, T. harzianum (74 isolates), T. lixii (16 isolates) and T. sp. (21 isolates), represented by six different species. Their multi-locus analysis (tef1, translation elongation factor 1; rpb2, RNA polymerase B) identified three T. afroharzianum, one T. lixii, one T. atrobrunneum and one T. lentinulae species. These six new strains were selected to determine their suitability as plant growth promoters (PGP) and biocontrol agents (BCA) against Fusarium seedling blight disease (FSB) in wheat caused by Fusarium culmorum. All of the strains exhibited PGP abilities correlated to ammonia and indole-like compound production. In terms of biocontrol activity, all of the strains inhibited the development of F. culmorum in vitro, which is linked to the production of lytic enzymes, as well as diffusible and volatile organic compounds. An in planta assay was carried out on the seeds of a Tunisian modern wheat variety (Khiar) by coating them with Trichoderma. A significant increase in biomass was observed, which is associated with increased chlorophyll and nitrogen. An FSB bioprotective effect was confirmed for all strains (with Th01 being the most effective) by suppressing morbid symptoms in germinated seeds and seedlings, as well as by limiting F. culmorum aggressiveness on overall plant growth. Plant transcriptome analysis revealed that the isolates triggered several SA- and JA-dependent defense-encoding genes involved in F. culmorum resistance in the roots and leaves of three-week-old seedlings. This finding makes these strains very promising in promoting growth and controlling FSB disease in modern wheat varieties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA