Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genet Med ; 21(9): 2103-2115, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30967659

RESUMO

PURPOSE: To identify the molecular cause in five unrelated families with a distinct autosomal dominant ocular systemic disorder we called ROSAH syndrome due to clinical features of retinal dystrophy, optic nerve edema, splenomegaly, anhidrosis, and migraine headache. METHODS: Independent discovery exome and genome sequencing in families 1, 2, and 3, and confirmation in families 4 and 5. Expression of wild-type messenger RNA and protein in human and mouse tissues and cell lines. Ciliary assays in fibroblasts from affected and unaffected family members. RESULTS: We found the heterozygous missense variant in the ɑ-kinase gene, ALPK1, (c.710C>T, [p.Thr237Met]), segregated with disease in all five families. All patients shared the ROSAH phenotype with additional low-grade ocular inflammation, pancytopenia, recurrent infections, and mild renal impairment in some. ALPK1 was notably expressed in retina, retinal pigment epithelium, and optic nerve, with immunofluorescence indicating localization to the basal body of the connecting cilium of the photoreceptors, and presence in the sweat glands. Immunocytofluorescence revealed expression at the centrioles and spindle poles during metaphase, and at the base of the primary cilium. Affected family member fibroblasts demonstrated defective ciliogenesis. CONCLUSION: Heterozygosity for ALPK1, p.Thr237Met leads to ROSAH syndrome, an autosomal dominant ocular systemic disorder.


Assuntos
Nervo Óptico/patologia , Proteínas Quinases/genética , Retina/metabolismo , Distrofias Retinianas/genética , Exoma/genética , Feminino , Heterozigoto , Humanos , Hipo-Hidrose/genética , Hipo-Hidrose/patologia , Masculino , Transtornos de Enxaqueca/genética , Transtornos de Enxaqueca/patologia , Mutação de Sentido Incorreto/genética , Nervo Óptico/metabolismo , Linhagem , Fenótipo , Retina/patologia , Distrofias Retinianas/patologia , Esplenomegalia/genética , Esplenomegalia/patologia
2.
Fetal Diagn Ther ; 36(2): 173-80, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24685769

RESUMO

INTRODUCTION: Extremes of fetal growth are associated with increased perinatal mortality and morbidity and a higher prevalence of cardiovascular disease, obesity and diabetes in later life. We aimed to identify changes in placental gene expression in pregnancies with evidence of growth dysfunction and candidate genes that may be used to identify abnormal patterns of growth prior to delivery. METHODS: Growth-restricted (n = 4), macrosomic (n = 6) and normal term (n = 5) placentas were selected from a banked series (n = 200) collected immediately after caesarean section. RNA was extracted prior to microarray analysis using Affymetrix HG-U219 arrays to determine variation in gene expression. Genes of interest were confirmed using qRT-PCR. RESULTS: 338 genes in the growth-restricted and 41 genes in the macrosomic group were identified to be significantly dysregulated (>2-fold change; p < 0.05). CPXM2 and CLDN1 were upregulated and TXNDC5 and LRP2 downregulated in fetal growth restriction. In macrosomia, PHLDB2 and CLDN1 were upregulated and LEP and GCH1 were downregulated. DISCUSSION: Dysfunctional growth is associated with differential placental gene expression and affects genes with a whole spectrum of developmental and cellular functions. Better elucidation of these pathways may allow the development of biomarkers to identify growth abnormalities and effective prenatal intervention.


Assuntos
Retardo do Crescimento Fetal/genética , Macrossomia Fetal/genética , Macrossomia Fetal/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Placenta/metabolismo , Adulto , Feminino , Retardo do Crescimento Fetal/metabolismo , Humanos , Gravidez
3.
Stem Cells Int ; 2021: 4536382, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938339

RESUMO

Human induced pluripotent stem cells (hiPSCs) generated from patients and the derivative retinal cells enable the investigation of pathological and novel variants in relevant cell populations. Biallelic pathogenic variants in RPE65 cause early-onset severe retinal dystrophy (EOSRD) or Leber congenital amaurosis (LCA). Increasingly, regulatory-approved in vivo RPE65 retinal gene replacement therapy is available for patients with these clinical features, but only if they have biallelic pathological variants and sufficient viable retinal cells. In our cohort of patients, we identified siblings with early-onset severe retinal degeneration where genomic studies revealed compound heterozygous variants in RPE65, one a known pathogenic missense variant and the other a novel synonymous variant of uncertain significance. The synonymous variant was suspected to affect RNA splicing. Since RPE65 is very poorly expressed in all tissues except the retinal pigment epithelium (RPE), we generated hiPSC-derived RPE cells from the parental carrier of the synonymous variant. Sequencing of RNA obtained from hiPSC-RPE cells demonstrated heterozygous skipping of RPE65 exon 2 and the introduction of a premature stop codon in the mRNA. Minigene studies confirmed the splicing aberration. Results from this study led to reclassification of the synonymous variant to a pathogenic variant, providing the affected patients with access to RPE65 gene replacement therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA