Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecol Evol ; 11(17): 11890-11902, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34522348

RESUMO

Mast seeding, the synchronized interannual variation in seed production of trees, is a well-known bottom-up driver for population densities of granivorous forest rodents. Such demographic effects also affect habitat preferences of the animals: After large seed production events, reduced habitat selectivity can lead to spillover from forest patches into adjacent alpine meadows or clear-cuts, as has been reported for human-impacted forests. In unmanaged, primeval forests, however, gaps created by natural disturbances are typical elements, yet it is unclear whether the same spillover dynamics occur under natural conditions. To determine whether annual variation in seed production drives spillover effects in naturally formed gaps, we used 14 years of small mammal trapping data combined with seed trap data to estimate population densities of Apodemus spp. mice and bank voles (Myodes glareolus) on 5 forest sites with differing disturbance history. The study sites, located in a forest dominated by European beech (Fagus sylvatica), Norway spruce (Picea abies), and silver fir (Abies alba), consisted of two primeval forest sites with small canopy gaps, two sites with larger gaps (after an avalanche event and a windthrow event), and a managed forest stand with closed canopy as a control. Hierarchical Bayesian N-mixture models revealed a strong influence of seed rain on small rodent abundance, which were site-specific for M. glareolus but not for Apodemus spp. Following years of moderate or low seed crop, M. glareolus avoided open habitat patches but colonized those habitats in large numbers after full mast events, suggesting that spillover events also occur in unmanaged forests, but not in all small rodents. The species- and site-specific characteristics of local density responding to food availability have potentially long-lasting effects on forest gap regeneration dynamics and should be addressed in future studies.

2.
Sci Rep ; 10(1): 20274, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33219306

RESUMO

Herbivores are constitutive elements of most terrestrial ecosystems. Understanding effects of herbivory on ecosystem dynamics is thus a major, albeit challenging task in community ecology. Effects of mammals on plant communities are typically explored by comparing plant densities or diversity in exclosure experiments. This might over-estimate long-term herbivore effects at community levels as early life stage mortality is driven by a multitude of factors. Addressing these challenges, we established a set of 100 pairs of ungulate exclosures and unfenced control plots (25 m2) in mixed montane forests in the Alps in 1989 covering a forest area of 90 km2. Investigations ran until 2013. Analogous to the gap-maker-gap-filler approach, dynamically recording the height of the largest trees per tree species in paired plots with and without exclosures might allow for assessing herbivore impacts on those individuals with a high probability of attaining reproductive stages. We thus tested if recording maximum heights of regenerating trees would better reflect effects of ungulate herbivory on long-term dynamics of tree regeneration than recording of stem density, and if species dominance patterns would shift over time. For quantifying the effects of ungulate herbivory simultaneously at community and species level we used principle response curves (PRC). PRCs yielded traceable results both at community and species level. Trajectories of maximum heights yielded significant results contrary to trajectories of total stem density. Response patterns of tree species were not uniform over time: e.g., both Norway spruce and European larch switched in their response to fencing. Fencing explained about 3% of the variance of maximum tree heights after nine years but increased to about 10% after 24 years thus confirming the importance of long-term surveys. Maximum height dynamics of tree species, addressed in our study, can thus reflect local dominance of tree species via asymmetric plant competition. Such effects, both within and among forest patches, can accrue over time shaping forest structure and composition.


Assuntos
Conservação dos Recursos Naturais , Cervos/fisiologia , Florestas , Herbivoria , Rupicapra/fisiologia , Animais , Áustria , Monitorização de Parâmetros Ecológicos/estatística & dados numéricos , Dispersão Vegetal , Árvores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA