Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Protein Expr Purif ; 219: 106462, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38556142

RESUMO

The bacterium Burkholderia pseudomallei is the cause of melioidosis infectious disease. In this bacterium, the BLF1 protein wide inhibits the synthesis of proteins in human cells. This disease is reported to cause a death rate of 40% in some parts of the world. Currently, no effective vaccine is available against this bacterial infection. In this study, therefore, a Nano vaccine was synthesized based on the trimethyl chitosan (TMC) polymer containing the BLF1 recombinant protein, and its immunogenicity and protection in Syrian mice were evaluated by oral and subcutaneous injections. The BLF1 recombinant protein expression was induced in Escherichia coli Bl21 (DE3) and purified by the affinity chromatography technique. Recombinant protein-containing nanoparticles (NPs) were then synthesized by the ionotropic gelation method. After oral and subcutaneous injections, antibody titration was assessed by the indirect ELISA assay. Finally, murine groups were challenged using the BLF1 toxin. The results indicated that the immune system showed more antibody titration in subcutaneous injection than in the oral form. However, the results were reversed in the challenge results, and the survival rate was more significant in the oral injection.


Assuntos
Quitosana , Nanopartículas , Proteínas Recombinantes , Animais , Quitosana/química , Camundongos , Nanopartículas/química , Administração Oral , Injeções Subcutâneas , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/administração & dosagem , Escherichia coli/genética , Melioidose/prevenção & controle , Melioidose/imunologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/química , Feminino , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/administração & dosagem , Anticorpos Antibacterianos/imunologia
2.
Mol Immunol ; 173: 53-60, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39053389

RESUMO

INTRODUCTION: Shigellosis is a gastrointestinal disease causes high morbidity and mortality worldwide, however, there is no anti-Shigella vaccine. The use of antibiotics in shigellosis treatment exacerbates antibiotic resistance. Antibodies, particularly egg yolk antibody (IgY), offer a promising approach to address this challenge. This study aimed to investigate the prophylactic effect of IgY produced against a recombinant chimeric protein containing the immunogens IpaD, IpaB, StxB, and VirG from Shigella. METHODS: The chimeric protein, comprising IpaD, IpaB, StxB, and VirG, was expressed in E. coli BL21 and purified using the Ni-NTA column. Following immunization of chickens, IgY was extracted from egg yolk using the PEG-6000 method and analyzed through SDS-PAGE and ELISA techniques. Subsequently, the prophylactic efficacy of IgY was assessed by challenging of mice with 10 LD50 of S. dysenteriae and administering different concentrations of IgY (1.25, 2.5, 5, and 10 mg/kg) under various time conditions. RESULTS: The recombinant protein, weighing 82 kDa, was purified and confirmed by western blotting. The IgY concentration was determined as 9.5 mg/ml of egg yolk and the purity of the extracted IgY was over 90 %. The results of the ELISA showed that at least 19 ng of pure antibody identified recombinant protein and reacts with it. The challenge test employing IgY and Shigella demonstrated a direct correlation between the survival rate and antibody concentration, with increased concentrations leading to decreased mortality rates. Treatment of mice with 10 mg/kg IgY leads to 80 % survival of the mice against 10 LD50 S. dysenteriae. CONCLUSION: Our findings suggest that IgY may offer therapeutic potential in treating Shigella infections and combating antibiotic resistance.


Assuntos
Galinhas , Disenteria Bacilar , Gema de Ovo , Imunoglobulinas , Animais , Imunoglobulinas/imunologia , Camundongos , Gema de Ovo/imunologia , Disenteria Bacilar/prevenção & controle , Disenteria Bacilar/imunologia , Shigella/imunologia , Proteínas de Bactérias/imunologia , Proteínas Recombinantes/imunologia , Feminino , Anticorpos Antibacterianos/imunologia , Camundongos Endogâmicos BALB C , Antígenos de Bactérias/imunologia , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/farmacologia
3.
J Biomed Mater Res B Appl Biomater ; 112(2): e35346, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38359175

RESUMO

Improvement of mechanical properties of injectable tissue engineering scaffolds is a current challenge. The objective of the current study is to produce a highly porous injectable scaffold with improved mechanical properties. For this aim, cellulose nanocrystals-reinforced dual crosslinked porous nanocomposite cryogels were prepared using chemically crosslinked methacrylated gelatin (GelMA) and ionically crosslinked hyaluronic acid (HA) through the cryogelation process. The resulting nanocomposites showed highly porous structures with interconnected porosity (>90%) and mean pore size in the range of 130-296 µm. The prepared nanocomposite containing 3%w/v of GelMA, 20 w/w% of HA, and 1%w/v of CNC showed the highest Young's modulus (10 kPa) and excellent reversibility after 90% compression and could regain its initial shape after injection by a 16-gauge needle in the aqueous media. The in vitro results demonstrated acceptable viability (>90%) and migration of the human chondrocyte cell line (C28/I2), and chondrogenic differentiation of human adipose stem cells. A two-month in vivo assay on a rabbit's ear model confirmed that the regeneration potential of the prepared cryogel is comparable to the natural autologous cartilage graft, suggesting it is a promising alternative for autografts in the treatment of cartilage defects.


Assuntos
Nanocompostos , Nanopartículas , Animais , Coelhos , Humanos , Criogéis/farmacologia , Criogéis/química , Ácido Hialurônico/farmacologia , Ácido Hialurônico/química , Gelatina/farmacologia , Gelatina/química , Celulose/farmacologia , Celulose/química , Alicerces Teciduais/química , Cartilagem , Engenharia Tecidual/métodos , Nanopartículas/química , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA