Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Inf Model ; 62(19): 4605-4619, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36178379

RESUMO

The ability to predict cell-permeable candidate molecules has great potential to assist drug discovery projects. Large molecules that lie beyond the Rule of Five (bRo5) are increasingly important as drug candidates and tool molecules for chemical biology. However, such large molecules usually do not cross cell membranes and cannot access intracellular targets or be developed as orally bioavailable drugs. Here, we describe a random forest (RF) machine learning model for the prediction of passive membrane permeation rates developed using a set of over 1000 bRo5 macrocyclic compounds. The model is based on easily calculated chemical features/descriptors as independent variables. Our random forest (RF) model substantially outperforms a multiple linear regression model based on the same features and achieves better performance metrics than previously reported models using the same underlying data. These features include: (1) polar surface area in water, (2) the octanol-water partitioning coefficient, (3) the number of hydrogen-bond donors, (4) the sum of the topological distances between nitrogen atoms, (5) the sum of the topological distances between nitrogen and oxygen atoms, and (6) the multiple molecular path count of order 2. The last three features represent molecular flexibility, the ability of the molecule to adopt different conformations in the aqueous and membrane interior phases, and the molecular "chameleonicity." Guided by the model, we propose design guidelines for membrane-permeating macrocycles. It is anticipated that this model will be useful in guiding the design of large, bioactive molecules for medicinal chemistry and chemical biology applications.


Assuntos
Compostos Macrocíclicos , Hidrogênio , Aprendizado de Máquina , Nitrogênio , Octanóis , Oxigênio , Água
2.
Biochemistry ; 56(19): 2455-2466, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28437072

RESUMO

Grafting bioactive peptide sequences onto small cysteine-rich scaffolds is a promising strategy for enhancing their stability and value as novel peptide-based therapeutics. However, correctly folded disulfide-rich peptides can be challenging to produce by either recombinant or synthetic means. The single disulfide-directed ß-hairpin (SDH) fold, first observed in contryphan-Vc1, provides a potential alternative to complex disulfide-rich scaffolds. We have undertaken recombinant production of full-length contryphan-Vc1 (rCon-Vc1[Z1Q]) and a truncated analogue (rCon-Vc11-22[Z1Q]), analyzed the backbone dynamics of rCon-Vc1[Z1Q], and probed the conformational and proteolytic stability of these peptides to evaluate the potential of contryphan-Vc1 as a molecular scaffold. Backbone 15N relaxation measurements for rCon-Vc1[Z1Q] indicate that the N-terminal domain of the peptide is ordered up to Thr19, whereas the remainder of the C-terminal region is highly flexible. The solution structure of truncated rCon-Vc11-22[Z1Q] was similar to that of the full-length peptide, indicating that the flexible C-terminus does not have any effect on the structured domain of the peptide. Contryphan-Vc1 exhibited excellent proteolytic stability against trypsin and chymotrypsin but was susceptible to pepsin digestion. We have investigated whether contryphan-Vc1 can accept a bioactive epitope while maintaining the structure of the peptide by introducing peptide sequences based on the DINNN motif of inducible nitric oxide synthase. We show that sCon-Vc11-22[NNN12-14] binds to the iNOS-binding protein SPSB2 with an affinity of 1.3 µM while maintaining the SDH fold. This study serves as a starting point in utilizing the SDH fold as a peptide scaffold.


Assuntos
Conotoxinas/química , Peptídeos Cíclicos/química , Engenharia de Proteínas , Proteínas Supressoras da Sinalização de Citocina/química , Conotoxinas/genética , Conotoxinas/metabolismo , Cisteína/química , Cistina/química , Epitopos , Humanos , Cinética , Isótopos de Nitrogênio , Oxirredução , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Peptídeos Cíclicos/genética , Peptídeos Cíclicos/metabolismo , Conformação Proteica em Folha beta , Dobramento de Proteína , Estabilidade Proteica , Proteólise , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Solubilidade , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Ressonância de Plasmônio de Superfície
3.
Bioorg Med Chem ; 25(20): 5743-5748, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28927902

RESUMO

Nitric oxide (NO) is an important effector molecule in host defence against bacterial pathogens. The development of fluorescence imaging to monitor NO production in vitro and in vivo will increase our understanding of its biological role. Recently, a novel 'trappable' fluorescent blue 'turn-on' Cu(II)-complexed coumarin-based probe (CB) has been developed to detect NO. In this study, CB was investigated to evaluate its ability to detect NO in macrophages. Using confocal microscopy, NO was successfully detected in macrophages in the presence of stimuli that induce nitric oxide synthase (iNOS), the enzyme responsible for production of NO. The time dependence and subcellular compartmentalisation of CB in macrophages were evaluated. The probe can be trapped within cells and reacts directly and specifically with NO, rendering it a promising tool for imaging NO in response to pharmacological agents that modulate its level, for example during bacterial infections.


Assuntos
Cumarínicos/química , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Macrófagos/metabolismo , Óxido Nítrico/análise , Animais , Camundongos , Microscopia Confocal , Estrutura Molecular , Óxido Nítrico/metabolismo , Células RAW 264.7 , Fatores de Tempo
4.
J Enzyme Inhib Med Chem ; 29(2): 215-22, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23402383

RESUMO

Herein, we designed and synthesized certain anilinoquinazoline derivatives bearing bulky arylpyridinyl, arylpropenoyl and arylpyrazolyl moieties at the 4' position of the anilinoquinazoline, as potential dual HER2/EGFR kinase inhibitors. A detailed molecular modeling study was performed by docking the synthesized compounds in the active site of the epidermal growth factor receptor (EGFR). The synthesized compounds were further tested for their inhibitory activity on EGFR and HER2 tyrosine kinases. The aryl 2-imino-1,2-dihydropyridine derivatives 5d and 5e displayed the most potent inhibitory activity on EGFR with IC50 equal to 2.09 and 1.94 µM, respectively, and with IC50 equal to 3.98 and 1.04 µM on HER2, respectively. Furthermore, the anti-proliferative activity of these most active compounds on MDA-MB-231 breast cancer cell lines, known to overexpress EGFR, showed an IC50 range of 2.4 and 2.5 µM, respectively.


Assuntos
Compostos de Anilina/síntese química , Antineoplásicos/síntese química , Receptores ErbB/antagonistas & inibidores , Inibidores de Proteínas Quinases/síntese química , Quinazolinas/síntese química , Receptor ErbB-2/antagonistas & inibidores , Compostos de Anilina/química , Compostos de Anilina/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Descoberta de Drogas , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/química , Quinazolinas/farmacologia
5.
ACS Chem Biol ; 13(10): 2930-2938, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30226743

RESUMO

SPRY domain- and SOCS box-containing proteins SPSB1, SPSB2, and SPSB4 interact with inducible nitric oxide synthase (iNOS), causing the iNOS to be polyubiquitinated and targeted for degradation. Inhibition of this interaction increases iNOS levels, and consequently cellular nitric oxide (NO) concentrations, and has been proposed as a potential strategy for killing intracellular pathogens. We previously described two DINNN-containing cyclic peptides (CP1 and CP2) as potent inhibitors of the murine SPSB-iNOS interaction. In this study, we report the crystal structures of human SPSB4 bound to CP1 and CP2 and human SPSB2 bound to CP2. We then used these structures to design a new inhibitor in which an intramolecular hydrogen bond was replaced with a hydrocarbon linkage to form a smaller macrocycle while maintaining the bound geometry of CP2 observed in the crystal structures. This resulting pentapeptide SPSB-iNOS inhibitor (CP3) has a reduced macrocycle ring size, fewer nonbinding residues, and includes additional conformational constraints. CP3 has a greater affinity for SBSB2 ( KD = 7 nM as determined by surface plasmon resonance) and strongly inhibits the SPSB2-iNOS interaction in macrophage cell lysates. We have also determined the crystal structure of CP3 in complex with human SPSB2, which reveals the structural basis for the increased potency of CP3 and validates the original design.


Assuntos
Anti-Infecciosos/química , Peptídeos e Proteínas de Sinalização Intracelular/química , Óxido Nítrico Sintase Tipo II/metabolismo , Oligopeptídeos/química , Peptídeos Cíclicos/química , Proteínas Supressoras da Sinalização de Citocina/química , Animais , Anti-Infecciosos/farmacologia , Desenho de Fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Oligopeptídeos/farmacologia , Peptídeos Cíclicos/farmacologia , Ligação Proteica , Células RAW 264.7 , Proteínas Supressoras da Sinalização de Citocina/metabolismo
6.
J Mol Graph Model ; 44: 220-31, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23911931

RESUMO

Based on the hit structures that have been identified in our previous studies against EGFR and HER2, new potential inhibitors that share the same scaffold of the hit structures are designed and screened in silico. Insights into understanding the potential inhibitory effect of the new inhibitors against both EGFR and HER2 receptors is obtained using extended molecular dynamics (MD) simulations and different scoring techniques. The binding mechanisms and dynamics are detailed with respect to two approved inhibitors against EGFR (lapatinib) and HER2 (SYR127063). The best scoring inhibitor (T9) is chosen for additional in silico investigation against both the wild-type and T790M mutant strain of EGFR and the wild-type HER2. The results reveal that certain substitution patterns increase the stability and assure stronger binding and higher H-bond occupancy of the conserved water molecule that is commonly observed with kinase crystal structures. Furthermore, the new inhibitor (T9) forms stable interactions with the mutant strain as a direct consequence of the enhanced ability to form additional hydrogen bonding interactions with binding site residues.


Assuntos
Simulação por Computador , Receptores ErbB/química , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/química , Receptor ErbB-2/química , Sítios de Ligação , Desenho de Fármacos , Receptores ErbB/antagonistas & inibidores , Humanos , Ligantes , Conformação Molecular , Simulação de Acoplamento Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Relação Quantitativa Estrutura-Atividade , Receptor ErbB-2/antagonistas & inibidores , Água/química
7.
J Mol Graph Model ; 40: 91-8, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23353584

RESUMO

In the development of new anti-cancer drugs to tackle the problem of resistance to current chemotherapeutic agents, a new series of anti-HER2 (human epidermal growth factor receptors 2) agents has been synthesized and investigated using different computational methods. Although non-selective, the most active inhibitor in the new series shows higher activity toward HER2 than EGFR. The induced fit docking protocol (IFD) is performed to find possible binding poses of the new inhibitors in the active site of the HER2 receptor. Molecular dynamic simulations of the inhibitor-protein complexes for the two most active compounds from the new series are carried out. Simulations stability is checked using different stability parameters. Different scoring functions are employed.


Assuntos
Desenho de Fármacos , Ligantes , Modelos Moleculares , Receptor ErbB-2/química , Relação Estrutura-Atividade , Antineoplásicos/química , Antineoplásicos/farmacologia , Humanos , Ligação Proteica , Teoria Quântica , Receptor ErbB-2/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA