Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 97(6): e0005323, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37255470

RESUMO

Macrophages can serve as a reservoir for human immunodeficiency-1 (HIV-1) virus in host cells, constituting a barrier to eradication, even in patients who are receiving antiretroviral therapy. Although many noncoding RNAs have been characterized as regulators in HIV-1/AIDS-induced immune response and pathogenesis, only a few long noncoding RNAs (lncRNAs) have demonstrated a close association with HIV-1 replication, and the molecular mechanisms remain unknown. In this study, we investigated how lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), related microRNAs, and key inflammatory genes alter HIV-1 replication in macrophages. Our data show that HIV-1 infection modulates the expression of miR-155 and miR-150-5p in a time-dependent manner, which is regulated by MALAT1. MALAT1 induced suppressor of cytokine signaling 1 (SOCS1) expression by sponging miR-150-5p in HIV-1-infected macrophages and stimulated inflammatory mediators triggering receptor expressed on myeloid cells/cold inducible RNA binding protein (TREM 1/CIRP) ligand/receptor. The RNA immunoprecipitation (RIP) assay validated the direct interaction within the MALAT1/miR-150-5p/SOCS1 axis. HIV-1 infection-mediated upregulation of MALAT1, SOCS1, and HIV-1 Gag was attenuated by SN50 (an NF-кB p50 inhibitor). MALAT1 antisense oligonucleotides (ASOs) suppressed HIV-1 p24 production and HIV-1 Gag gene expression and decreased expression of miR-155 and SOCS1, as well as the production of proinflammatory cytokines by HIV-1-infected macrophages. In conclusion, HIV-1 infection induces MALAT1, which attenuates miR-150-5p expression and increases SOCS1 expression, promoting HIV-1 replication and reactivation. These data provide new insights into how MALAT1 alters the macrophage microenvironment and subsequently promotes viral replication and suggest a potential role for targeting MALAT1 as a therapeutic approach to eliminate HIV-1 reservoirs. IMPORTANCE Viral reservoirs constitute an obstacle to curing HIV-1 diseases, despite antiretroviral therapy. Macrophages serve as viral reservoirs in HIV infection by promoting long-term replication and latency. Recent studies have shown that lncRNAs can modulate virus-host interactions, but the underlying mechanisms are not fully understood. In this study, we demonstrate how lncRNA MALAT1 contributes to HIV-1 replication through modulation of the miR-150/SOCS1 axis in human macrophages. Our findings have the potential to identify new therapies for eliminating HIV-1 reservoirs in immune cells.


Assuntos
Infecções por HIV , MicroRNAs , RNA Longo não Codificante , Replicação Viral , Humanos , Infecções por HIV/genética , Macrófagos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , HIV-1/fisiologia
2.
FASEB J ; 37(8): e23101, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37486603

RESUMO

G protein-coupled receptors (GPCRs) are the largest and most diverse class of signaling receptors. GPCRs regulate many functions in the human body and have earned the title of "most targeted receptors". About one-third of the commercially available drugs for various diseases target the GPCRs. Fibroblasts lay the architectural skeleton of the body, and play a key role in supporting the growth, maintenance, and repair of almost all tissues by responding to the cellular cues via diverse and intricate GPCR signaling pathways. This review discusses the dynamic architecture of the GPCRs and their intertwined signaling in pathological conditions such as idiopathic pulmonary fibrosis, cardiac fibrosis, pancreatic fibrosis, hepatic fibrosis, and cancer as opposed to the GPCR signaling of fibroblasts in physiological conditions. Understanding the dynamics of GPCR signaling in fibroblasts with disease progression can help in the recognition of the complex interplay of different GPCR subtypes in fibroblast-mediated diseases. This review highlights the importance of designing and adaptation of next-generation strategies such as GPCR-omics, focused target identification, polypharmacology, and effective personalized medicine approaches to achieve better therapeutic outcomes for fibrosis and fibrosis associated malignancies.


Assuntos
Neoplasias , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Fibroblastos/metabolismo , Fibrose
3.
Am J Respir Cell Mol Biol ; 63(2): 144-151, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32160017

RESUMO

The incidence and prevalence of nontuberculous mycobacteria (NTM) lung disease is rising worldwide and accounts for most clinical cases of NTM disease. NTM infections occur in both immunocompetent and immunocompromised hosts. Macrophages are the primary host cells that initiate an immune response to NTM. Defining the molecular events that govern the control of infection within macrophages is fundamental to understanding the pathogenesis of NTM disease. Here, we review key macrophage host signaling pathways that contribute to the host immune response to pulmonary NTM infections. In this review, we focus primarily on NTM that are known to cause lung disease, including Mycobacterium avium intracellulare, M. abscessus, and M. kansasii.


Assuntos
Pneumopatias/metabolismo , Macrófagos/metabolismo , Infecções por Mycobacterium não Tuberculosas/metabolismo , Micobactérias não Tuberculosas/patogenicidade , Transdução de Sinais/fisiologia , Animais , Humanos , Pneumopatias/microbiologia , Infecções por Mycobacterium não Tuberculosas/microbiologia
4.
Clin Sci (Lond) ; 134(14): 1911-1934, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32537652

RESUMO

Cystic fibrosis (CF) is a progressive multiorgan autosomal recessive disease with devastating impact on the lungs caused by derangements of the CF transmembrane conductance regulator (CFTR) gene. Morbidity and mortality are caused by the triad of impaired mucociliary clearance, microbial infections and chronic inflammation. Pseudomonas aeruginosa is the main respiratory pathogen in individuals with CF infecting most patients in later stages. Despite its recognized clinical impact, molecular mechanisms that underlie P. aeruginosa pathogenesis and the host response to P. aeruginosa infection remain incompletely understood. The nuclear hormone receptor peroxisome proliferator-activated receptor (PPAR) γ (PPARγ), has shown to be reduced in CF airways. In the present study, we sought to investigate the upstream mechanisms repressing PPARγ expression and its impact on airway epithelial host defense. Endoplasmic reticulum-stress (ER-stress) triggered unfolded protein response (UPR) activated by misfolded CFTR and P. aeruginosa infection contributed to attenuated expression of PPARγ. Specifically, the protein kinase RNA (PKR)-like ER kinase (PERK) signaling pathway led to the enhanced expression of the CCAAT-enhancer-binding-protein homologous protein (CHOP). CHOP induction led to the repression of PPARγ expression. Mechanistically, we showed that CHOP induction mediated PPARγ attenuation, impacted the innate immune function of normal and ∆F508 primary airway epithelial cells by reducing expression of antimicrobial peptide (AMP) and paraoxanse-2 (PON-2), as well as enhancing IL-8 expression. Furthermore, mitochondrial reactive oxygen species production (mt-ROS) and ER-stress positive feedforward loop also dysregulated mitochondrial bioenergetics. Additionally, our findings implicate that PPARγ agonist pioglitazone (PIO) has beneficial effect on the host at the multicellular level ranging from host defense to mitochondrial re-energization.


Assuntos
Fibrose Cística/metabolismo , PPAR gama/metabolismo , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/fisiologia , Resposta a Proteínas não Dobradas , Células A549 , Arildialquilfosfatase/metabolismo , Fibrose Cística/complicações , Fibrose Cística/microbiologia , Estresse do Retículo Endoplasmático , Células Epiteliais/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Interleucina-8/metabolismo , Mitocôndrias/metabolismo , PPAR gama/agonistas , Pioglitazona , Infecções por Pseudomonas/imunologia , Fator de Transcrição CHOP/metabolismo , beta-Defensinas/metabolismo
5.
J Neuroinflammation ; 16(1): 241, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31779628

RESUMO

BACKGROUND: Sepsis-associated encephalopathy (SAE), a diffuse cerebral dysfunction in the absence of direct CNS infection, is associated with increased rates of mortality and morbidity in patients with sepsis. Increased cytokine production and disruption of the blood-brain barrier (BBB) are implicated in the pathogenesis of SAE. The induction of pro-inflammatory mediators is driven, in part, by activation of NF-κΒ. Lipopolysaccharide (LPS), an endotoxin produced by gram-negative bacteria, potently activates NF-κΒ and its downstream targets, including cyclooxygenase-2 (Cox-2). Cox-2 catalyzes prostaglandin synthesis and in the brain prostaglandin, E2 is capable of inducing endothelial permeability. Depletion of polymerase δ-interacting protein 2 (Poldip2) has previously been reported to attenuate BBB disruption, possibly via regulation of NF-κΒ, in response to ischemic stroke. Here we investigated Poldip2 as a novel regulator of NF-κΒ/cyclooxygenase-2 signaling in an LPS model of SAE. METHODS: Intraperitoneal injections of LPS (18 mg/kg) were used to induce BBB disruption in Poldip2+/+ and Poldip2+/- mice. Changes in cerebral vascular permeability and the effect of meloxicam, a selective Cox-2 inhibitor, were assessed by Evans blue dye extravasation. Cerebral cortices of Poldip2+/+ and Poldip2+/- mice were further evaluated by immunoblotting and ELISA. To investigate the role of endothelial Poldip2, immunofluorescence microscopy and immunoblotting were performed to study the effect of siPoldip2 on LPS-mediated NF-κΒ subunit p65 translocation and Cox-2 induction in rat brain microvascular endothelial cells. Finally, FITC-dextran transwell assay was used to assess the effect of siPoldip2 on LPS-induced endothelial permeability. RESULTS: Heterozygous deletion of Poldip2 conferred protection against LPS-induced BBB permeability. Alterations in Poldip2+/+ BBB integrity were preceded by induction of Poldip2, p65, and Cox-2, which was not observed in Poldip2+/- mice. Consistent with these findings, prostaglandin E2 levels were significantly elevated in Poldip2+/+ cerebral cortices compared to Poldip2+/- cortices. Treatment with meloxicam attenuated LPS-induced BBB permeability in Poldip2+/+ mice, while having no significant effect in Poldip2+/- mice. Moreover, silencing of Poldip2 in vitro blocked LPS-induced p65 nuclear translocation, Cox-2 expression, and endothelial permeability. CONCLUSIONS: These data suggest Poldip2 mediates LPS-induced BBB disruption by regulating NF-κΒ subunit p65 activation and Cox-2 and prostaglandin E2 induction. Consequently, targeted inhibition of Poldip2 may provide clinical benefit in the prevention of sepsis-induced BBB disruption.


Assuntos
Barreira Hematoencefálica/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Nucleares/metabolismo , Encefalopatia Associada a Sepse/metabolismo , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Permeabilidade Capilar/efeitos dos fármacos , Permeabilidade Capilar/fisiologia , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/genética , NF-kappa B/metabolismo , Proteínas Nucleares/genética , Permeabilidade , Encefalopatia Associada a Sepse/genética , Encefalopatia Associada a Sepse/patologia
6.
Clin Sci (Lond) ; 133(2): 321-334, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30622219

RESUMO

Acute respiratory distress syndrome (ARDS) in a deadly disease that can be brought on by endotoxins such as lipopolysaccharide (LPS). ARDS is characterized by vascular permeability, a severe inflammatory response, lung leukocyte infiltration, and resultant lung edema. Polymerase δ-interacting protein 2 (Poldip2) is a novel regulator of blood-brain barrier permeability; however, its role in regulating lung permeability and vascular inflammation is unknown. Here, the role of Poldip2 in regulating vascular permeability and inflammation in a mouse model of ARDS was assessed. Heterozygous deletion of Poldip2 was found to reduce LPS-induced mortality within 20 h, lung inflammatory signaling, and leukocyte infiltration. Moreover, reduced Poldip2-suppressed LP-induced vascular cell adhesion molecule (VCAM)-1 induction, leukocyte recruitment, and mitochondrial reactive oxygen species (ROS) production in vitro These data indicate that Poldip2 is an important regulator of the debilitating consequences of ARDS, potentially through the regulation of mitochondrial ROS-induced inflammatory signaling. Consequently, inhibition of Poldip2 may be a viable option for therapeutic discovery moving forward.


Assuntos
Permeabilidade Capilar , Células Endoteliais/metabolismo , Pulmão/irrigação sanguínea , Proteínas Mitocondriais/deficiência , Proteínas Nucleares/deficiência , Edema Pulmonar/prevenção & controle , Síndrome do Desconforto Respiratório/metabolismo , Vasculite/prevenção & controle , Animais , Adesão Celular , Técnicas de Cocultura , Citocinas/metabolismo , Modelos Animais de Doenças , Células Endoteliais/patologia , Feminino , Humanos , Leucócitos/metabolismo , Leucócitos/patologia , Masculino , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Edema Pulmonar/genética , Edema Pulmonar/metabolismo , Edema Pulmonar/patologia , Espécies Reativas de Oxigênio/metabolismo , Síndrome do Desconforto Respiratório/genética , Síndrome do Desconforto Respiratório/patologia , Transdução de Sinais , Células THP-1 , Molécula 1 de Adesão de Célula Vascular/metabolismo , Vasculite/genética , Vasculite/metabolismo , Vasculite/patologia
7.
Am J Respir Cell Mol Biol ; 58(4): 428-439, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29372812

RESUMO

Pseudomonas aeruginosa is a major health challenge that causes recalcitrant multidrug-resistant infections, especially in immunocompromised and hospitalized patients. P. aeruginosa is an important cause of nosocomial and ventilator-associated pneumonia characterized by high prevalence and fatality rates. P. aeruginosa also causes chronic lung infections in individuals with cystic fibrosis. Multidrug- and totally drug-resistant strains of P. aeruginosa are increasing threats that contribute to high mortality in these patients. The pathogenesis of many P. aeruginosa infections depends on its ability to form biofilms, structured bacterial communities that can coat mucosal surfaces or invasive devices. These biofilms make conditions more favorable for bacterial persistence, as embedded bacteria are inherently more difficult to eradicate than planktonic bacteria. The molecular mechanisms that underlie P. aeruginosa biofilm pathogenesis and the host response to P. aeruginosa biofilms remain to be fully defined. However, it is known that biofilms offer protection from the host immune response and are also extremely recalcitrant to antimicrobial therapy. Therefore, development of novel therapeutic strategies specifically aimed at biofilms is urgently needed. Here, we review the host response, key clinical implications of P. aeruginosa biofilms, and novel therapeutic approaches to treat biofilms relevant to lung infections. Greater understanding of P. aeruginosa biofilms will elucidate novel avenues to improve outcomes for P. aeruginosa pulmonary infections.


Assuntos
Biofilmes/crescimento & desenvolvimento , Pneumonia Bacteriana/microbiologia , Pneumonia Associada à Ventilação Mecânica/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Animais , Antibacterianos/uso terapêutico , Biofilmes/efeitos dos fármacos , Farmacorresistência Bacteriana , Interações Hospedeiro-Patógeno , Humanos , Pneumonia Bacteriana/diagnóstico , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Associada à Ventilação Mecânica/diagnóstico , Pneumonia Associada à Ventilação Mecânica/tratamento farmacológico , Infecções por Pseudomonas/diagnóstico , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade
8.
FASEB J ; 31(8): 3608-3621, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28442545

RESUMO

Pseudomonas aeruginosa is a significant contributor to recalcitrant multidrug-resistant infections, especially in immunocompromised and hospitalized patients. The pathogenic profile of P. aeruginosa is related to its ability to secrete a variety of virulence factors and to promote biofilm formation. Quorum sensing (QS) is a mechanism wherein P. aeruginosa secretes small diffusible molecules, specifically acyl homo serine lactones, such as N-(3-oxo-dodecanoyl)-l-homoserine lactone (3O-C12-HSL), that promote biofilm formation and virulence via interbacterial communication. Strategies that strengthen the host's ability to inhibit bacterial virulence would enhance host defenses and improve the treatment of resistant infections. We have recently shown that peroxisome proliferator-activated receptor γ (PPARγ) agonists are potent immunostimulators that play a pivotal role in host response to virulent P. aeruginosa Here, we show that QS genes in P. aeruginosa (strain PAO1) and 3O-C12-HSL attenuate PPARγ expression in bronchial epithelial cells. PAO1 and 3O-C12-HSL induce barrier derangements in bronchial epithelial cells by lowering the expression of junctional proteins, such as zonula occludens-1, occludin, and claudin-4. Expression of these proteins was restored in cells that were treated with pioglitazone, a PPARγ agonist, before infection with PAO1 and 3O-C12-HSL. Barrier function and bacterial permeation studies that have been performed in primary human epithelial cells showed that PPARγ agonists are able to restore barrier integrity and function that are disrupted by PAO1 and 3O-C12-HSL. Mechanistically, we show that these effects are dependent on the induction of paraoxonase-2, a QS hydrolyzing enzyme, that mitigates the effects of QS molecules. Importantly, our data show that pioglitazone, a PPARγ agonist, significantly inhibits biofilm formation on epithelial cells by a mechanism that is mediated via paraoxonase-2. These findings elucidate a novel role for PPARγ in host defense against P. aeruginosa Strategies that activate PPARγ can provide a therapeutic complement for treatment of resistant P. aeruginosa infections.-Bedi, B., Maurice, N. M., Ciavatta, V. T., Lynn, K. S., Yuan, Z., Molina, S. A., Joo, M., Tyor, W. R., Goldberg, J. B., Koval, M., Hart, C. M., Sadikot, R. T. Peroxisome proliferator-activated receptor-γ agonists attenuate biofilm formation by Pseudomonas aeruginosa.


Assuntos
Proteínas de Bactérias/farmacologia , Biofilmes/crescimento & desenvolvimento , PPAR gama/agonistas , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Arildialquilfosfatase/genética , Arildialquilfosfatase/metabolismo , Linhagem Celular , Células Epiteliais/microbiologia , Regulação da Expressão Gênica/fisiologia , Humanos , Mutação , Pseudomonas aeruginosa/genética , Percepção de Quorum
9.
Am J Physiol Lung Cell Mol Physiol ; 313(2): L371-L383, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28522568

RESUMO

Pulmonary hypertension (PH) is a progressive disorder whose cellular pathogenesis involves enhanced smooth muscle cell (SMC) proliferation and resistance to apoptosis signals. Existing evidence demonstrates that the tumor suppressor programmed cell death 4 (PDCD4) affects patterns of cell growth and repair responses in the systemic vasculature following experimental injury. In the current study, the regulation PDCD4 and its functional effects on growth and apoptosis susceptibility in pulmonary artery smooth muscle cells were explored. We previously demonstrated that pharmacological activation of the nuclear transcription factor peroxisome proliferator-activated receptor-γ (PPARγ) attenuated hypoxia-induced proliferation of human pulmonary artery smooth muscle cells (HPASMCs) by inhibiting the expression and mitogenic functions of microRNA-21 (miR-21). In the current study, we hypothesize that PPARγ stimulates PDCD4 expression and HPASMC apoptosis by inhibiting miR-21. Our findings demonstrate that PDCD4 is reduced in the mouse lung upon exposure to chronic hypoxia (10% O2 for 3 wk) and in hypoxia-exposed HPASMCs (1% O2). HPASMC apoptosis was reduced by hypoxia, by miR-21 overexpression, or by siRNA-mediated PPARγ and PDCD4 depletion. Activation of PPARγ inhibited miR-21 expression and resultant proliferation, while restoring PDCD4 levels and apoptosis to baseline. Additionally, pharmacological activation of PPARγ with rosiglitazone enhanced PDCD4 protein expression and apoptosis in a dose-dependent manner as demonstrated by increased annexin V detection by flow cytometry. Collectively, these findings demonstrate that PPARγ confers growth-inhibitory signals in hypoxia-exposed HPASMCs through suppression of miR-21 and the accompanying derepression of PDCD4 that augments HPASMC susceptibility to undergo apoptosis.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/fisiologia , MicroRNAs/metabolismo , Miócitos de Músculo Liso/metabolismo , PPAR gama/metabolismo , Artéria Pulmonar/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Anexina A5/genética , Anexina A5/metabolismo , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Miócitos de Músculo Liso/efeitos dos fármacos , PPAR gama/genética , Artéria Pulmonar/efeitos dos fármacos , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Rosiglitazona , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Tiazolidinedionas/farmacologia
10.
Infect Immun ; 84(7): 1975-1985, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27091928

RESUMO

The pathogenic profile of Pseudomonas aeruginosa is related to its ability to secrete a variety of virulence factors. Quorum sensing (QS) is a mechanism wherein small diffusible molecules, specifically acyl-homoserine lactones, are produced by P. aeruginosa to promote virulence. We show here that macrophage clearance of P. aeruginosa (PAO1) is enhanced by activation of the nuclear hormone receptor peroxisome proliferator-activated receptor gamma (PPARγ). Macrophages treated with a PPARγ agonist (pioglitazone) showed enhanced phagocytosis and bacterial killing of PAO1. It is known that PAO1 QS molecules are inactivated by PON-2. QS molecules are also known to inhibit activation of PPARγ by competitively binding PPARγ receptors. In accord with this observation, we found that infection of macrophages with PAO1 inhibited expression of PPARγ and PON-2. Mechanistically, we show that PPARγ induces macrophage paraoxonase 2 (PON-2), an enzyme that degrades QS molecules produced by P. aeruginosa Gene silencing studies confirmed that enhanced clearance of PAO1 in macrophages by PPARγ is PON-2 dependent. Further, we show that PPARγ agonists also enhance clearance of P. aeruginosa from lungs of mice infected with PAO1. Together, these data demonstrate that P. aeruginosa impairs the ability of host cells to mount an immune response by inhibiting PPARγ through secretion of QS molecules. These studies define a novel mechanism by which PPARγ contributes to the host immunoprotective effects during bacterial infection and suggest a role for PPARγ immunotherapy for P. aeruginosa infections.


Assuntos
Interações Hospedeiro-Patógeno , PPAR gama/metabolismo , Pseudomonas aeruginosa/imunologia , Animais , Arildialquilfosfatase/metabolismo , Linhagem Celular , Células Cultivadas , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Ligantes , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Viabilidade Microbiana/imunologia , Modelos Biológicos , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/microbiologia , PPAR gama/agonistas , PPAR gama/genética , Fagocitose/efeitos dos fármacos , Fagocitose/imunologia , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia
11.
Am J Physiol Lung Cell Mol Physiol ; 310(5): L426-38, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26684249

RESUMO

Triggering receptors expressed on myeloid cell-1 (TREM-1) is a superimmunoglobulin receptor expressed on myeloid cells. Synergy between TREM-1 and Toll-like receptor amplifies the inflammatory response; however, the mechanisms by which TREM-1 accentuates inflammation are not fully understood. In this study, we investigated the role of TREM-1 in a model of LPS-induced lung injury and neutrophilic inflammation. We show that TREM-1 is induced in lungs of mice with LPS-induced acute neutrophilic inflammation. TREM-1 knockout mice showed an improved survival after lethal doses of LPS with an attenuated inflammatory response in the lungs. Deletion of TREM-1 gene resulted in significantly reduced neutrophils and proinflammatory cytokines and chemokines, particularly IL-1ß, TNF-α, and IL-6. Physiologically deletion of TREM-1 conferred an immunometabolic advantage with low oxygen consumption rate (OCR) sparing the respiratory capacity of macrophages challenged with LPS. Furthermore, we show that TREM-1 deletion results in significant attenuation of expression of miR-155 in macrophages and lungs of mice treated with LPS. Experiments with antagomir-155 confirmed that TREM-1-mediated changes were indeed dependent on miR-155 and are mediated by downregulation of suppressor of cytokine signaling-1 (SOCS-1) a key miR-155 target. These data for the first time show that TREM-1 accentuates inflammatory response by inducing the expression of miR-155 in macrophages and suggest a novel mechanism by which TREM-1 signaling contributes to lung injury. Inhibition of TREM-1 using a nanomicellar approach resulted in ablation of neutrophilic inflammation suggesting that TREM-1 inhibition is a potential therapeutic target for neutrophilic lung inflammation and acute respiratory distress syndrome (ARDS).


Assuntos
Lesão Pulmonar/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , MicroRNAs/genética , Receptores Imunológicos/metabolismo , Animais , Citocinas/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Lesão Pulmonar/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Células Mieloides/efeitos dos fármacos , Células Mieloides/metabolismo , Nanomedicina/métodos , RNA Interferente Pequeno/metabolismo , Receptor Gatilho 1 Expresso em Células Mieloides
12.
Biochem Biophys Res Commun ; 474(3): 534-540, 2016 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-27133718

RESUMO

Kaurenoic acid (ent-kaur-16-en-19-oic acid: KA) is a key constituent found in the roots of Aralia continentalis Kitagawa (Araliaceae), a remedy to treat patients with inflammatory diseases in traditional Asian medicine. Since KA activates Nrf2, a key anti-inflammatory factor, at the cellular level, we explored a possible therapeutic usage of KA against neutrophilic inflammatory lung disease such as acute lung injury (ALI). Intraperitoneal (i.p.) injection of lipopolysaccharide (LPS) to C57BL/6 mice induced lung inflammation as in ALI. 2 h after i.p. LPS, intratracheal (i.t.) delivery of KA (0.3, 3, or 30 µg/kg body weight) improved lung structure and significantly suppressed neutrophil infiltrations to mouse lungs, with concomitant reduction of myeloperoxidase activity and of the expression of pro-inflammatory cytokine genes. While activating Nrf2 and expressing Nrf2-dependent genes in mouse lungs, KA did not significantly suppress neutrophil lung inflammation in Nrf2 KO mice. In a mouse model of sepsis, a major cause of ALI, single i.t. KA (3 µg/kg) 2 h after the onset of sepsis significantly decreased the mortality of mice. Together, these results suggest that KA has a therapeutic potential against inflammatory lung disease, the effect of which is associated with Nrf2 activation.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/imunologia , Fator 2 Relacionado a NF-E2/imunologia , Sepse/tratamento farmacológico , Animais , Anti-Inflamatórios/administração & dosagem , Diterpenos/administração & dosagem , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/administração & dosagem , Camundongos , Camundongos Knockout , Sepse/imunologia , Resultado do Tratamento
13.
J Biol Chem ; 289(21): 15118-29, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24711453

RESUMO

Triggering receptor expressed on myeloid cells 1 (TREM-1) is a superimmunoglobulin receptor expressed on myeloid cells that plays an important role in the amplification of inflammation. Recent studies suggest a role for TREM-1 in tumor-associated macrophages with relationship to tumor growth and progression. Whether the effects of TREM-1 on inflammation and tumor growth are mediated by an alteration in cell survival signaling is not known. In these studies, we show that TREM-1 knock-out macrophages exhibit an increase in apoptosis of cells in response to lipopolysaccharide (LPS) suggesting a role for TREM-1 in macrophage survival. Specific ligation of TREM-1 with monoclonal TREM-1 (mTREM-1) or overexpression of TREM-1 with adeno-TREM-1 induced B-cell lymphoma-2 (Bcl-2) with depletion of the key executioner caspase-3 prevents the cleavage of poly(ADP-ribose) polymerase. TREM-1 knock-out cells showed lack of induction of Bcl2 with an increase in caspase-3 activation in response to lipopolysaccharide. In addition overexpression of TREM-1 with adeno-TREM-1 led to an increase in mitofusins (MFN1 and MFN2) and knockdown of TREM-1 decreased the expression of mitofusins suggesting that TREM-1 contributes to the maintenance of mitochondrial integrity favoring cell survival. Investigations into potential mechanisms by which TREM-1 alters cell survival showed that TREM-1-induced Bcl-2 in an Egr2-dependent manner. Furthermore, our data shows that expression of Egr2 in response to specific ligation of TREM-1 is ERK mediated. These data for the first time provide novel mechanistic insights into the role of TREM-1 as an anti-apoptotic protein that prolongs macrophage survival.


Assuntos
Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores Imunológicos/metabolismo , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Western Blotting , Caspase 3/metabolismo , Linhagem Celular , Sobrevivência Celular/genética , Células Cultivadas , Proteína 2 de Resposta de Crescimento Precoce/genética , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Inibidores Enzimáticos/farmacologia , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/metabolismo , Macrófagos/citologia , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Interferência de RNA , Receptores Imunológicos/genética , Receptor Gatilho 1 Expresso em Células Mieloides
14.
J Immunol ; 191(7): 3810-7, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24018272

RESUMO

Stomatococcus mucilaginosus is an oral commensal that has been occasionally reported to cause severe infections in immunocompromised patients. There is no information about the pathogenic role of S. mucilaginosus in airway infections. In a cohort of 182 subjects with bronchiectasis, we found that 9% were colonized with S. mucilaginosus in their lower airways by culture growth from bronchoalveolar lavage. To address the pathogenic potential of S.mucilaginosus, we developed a murine model of S. mucilaginosus lung infection. Intratracheal injection of S. mucilaginosus in C57BL/6 mice resulted in a neutrophilic influx with production of proinflammatory cytokines, chemokines, and lipid mediators, mainly PGE2 with induction of cyclooxygenase-2 (COX-2) in the lungs. Presence of TLR2 was necessary for induction of COX-2 and production of PGE2 by S. mucilaginosus. TLR2-deficient mice showed an enhanced clearance of S. mucilaginosus compared with wild-type mice. Administration of PGE2 to TLR2(-/-) mice resulted in impaired clearance of S. mucilaginosus, suggesting a key role for COX-2-induced PGE2 production in immune response to S. mucilaginosus. Mechanistically, induction of COX-2 in macrophages was dependent on the p38-ERK/MAPK signaling pathway. Furthermore, mice treated with S. mucilaginosus and Pseudomonas aeruginosa showed an increased mortality compared with mice treated with PA103 or S. mucilaginosus alone. Inhibition of COX-2 significantly improved survival in mice infected with PA103 and S. mucilaginosus. These data provide novel insights into the bacteriology and personalized microbiome in patients with bronchiectasis and suggest a pathogenic role for S. mucilaginosus in patients with bronchiectasis.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Micrococcaceae/patogenicidade , Pneumonia/metabolismo , Pneumonia/microbiologia , Transdução de Sinais , Animais , Bronquiectasia/imunologia , Bronquiectasia/metabolismo , Bronquiectasia/microbiologia , Linhagem Celular , Inibidores de Ciclo-Oxigenase/farmacologia , Dinoprostona/biossíntese , Modelos Animais de Doenças , Feminino , Humanos , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/microbiologia , Sistema de Sinalização das MAP Quinases , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Knockout , Micrococcaceae/imunologia , Infiltração de Neutrófilos/imunologia , Pneumonia/imunologia , Pneumonia/mortalidade , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/patogenicidade , Fatores de Risco , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo
15.
Am J Respir Cell Mol Biol ; 48(4): 477-88, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23306835

RESUMO

Earlier studies indicated a role for reactive oxygen species (ROS) in host defense against Pseudomonas aeruginosa infection. However, the role of nicotinamide adenine dinucleotide phosphate-reduced (NADPH) oxidase (NOX) proteins and the mechanism of activation for NADPH oxidase in P. aeruginosa infection are not well-defined. Here, we investigated the role of NOX2 and NOX4 proteins in P. aeruginosa infection, ROS generation, and endothelial barrier function in murine lungs and in human lung microvascular endothelial cells (HLMVECs). Airway instillation of P. aeruginosa strain 103 (PA103) significantly increased ROS concentrations in bronchial alveolar lavage (BAL) fluid, along with the expression of NOX2 and NOX4, but not NOX1 and NOX3, in lung tissue. In addition, PA103-infected HLMVECs revealed elevated concentrations of ROS, NOX2, and NOX4. In murine lungs and HLMVECs, PA103 induced the NF-κB pathway, and its inhibition blocked PA103-dependent NOX2 and NOX4 expression. Barrier function analysis showed that heat-killed PA103 induced endothelial permeability in a dose-dependent manner, which was attenuated by treatment with small interfering (si)RNA specific for NOX4, but not NOX2. Furthermore, the knockdown of NOX4, but not NOX2, with siRNA reduced PA103-mediated apoptosis in HLMVECs. In vivo, the down-regulation of NOX4 with NOX4 siRNA attenuated PA103-induced lung vascular permeability. The deletion of NOX2 in mice exerted no effect on permeability, but offered significant resistance to P. aeruginosa-induced lung inflammation. These data show that P. aeruginosa lung infection up-regulates NOX2 and NOX4 expression and ROS generation, which play distinct roles in regulating lung inflammation, apoptosis, and permeability.


Assuntos
Permeabilidade Capilar , Glicoproteínas de Membrana/biossíntese , NADPH Oxidases/biossíntese , NADP/metabolismo , Pneumonia Bacteriana/enzimologia , Infecções por Pseudomonas/enzimologia , Pseudomonas aeruginosa , Animais , Barreira Alveolocapilar/enzimologia , Barreira Alveolocapilar/patologia , Células Cultivadas , Regulação Enzimológica da Expressão Gênica/genética , Humanos , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , NADP/genética , NADPH Oxidase 2 , NADPH Oxidase 4 , NADPH Oxidases/genética , Pneumonia Bacteriana/genética , Pneumonia Bacteriana/patologia , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/patologia , Espécies Reativas de Oxigênio/metabolismo
16.
Blood ; 118(19): 5255-66, 2011 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-21937699

RESUMO

Although the role of ETS family transcriptional factor PU.1 is well established in macrophage maturation, its role in mature macrophages with reference to sepsis- related animal model has not been elucidated. Here, we report the in vivo function of PU.1 in mediating mature macrophage inflammatory phenotype by using bone marrow chimera mice with conditional PU.1 knockout. We observed that the expression of monocyte/macrophage-specific markers CD 11b, F4/80 in fetal liver cells, and bone marrow-derived macrophages were dependent on functional PU.1. Systemic inflammation as measured in terms of NF-κB reporter activity in lung, liver, and spleen tissues was significantly decreased in PU.1-deficient chimera mice compared with wild-type chimeras on lipopolysaccharide (LPS) challenge. Unlike wild-type chimera mice, LPS challenge in PU.1-deficient chimera mice resulted in decreased lung neu-trophilic inflammation and myeloperoxidase activity. Similarly, we found attenuated inflammatory gene expression (cyclooxygenase-2, inducible nitric-oxide synthase, and TLR4) and inflammatory cytokine secretion (IL-6, MCP-1, IL-1ß, TNF-α, and neutrophilic chemokine keratinocyte-derived chemokine) in PU.1-deficient mice. Most importantly, this attenuated lung and systemic inflammatory phenotype was associated with survival benefit in LPS-challenged heterozygotic PU.1-deficient mice, establishing a novel protective mechanistic role for the lineage-specific transcription factor PU.1.


Assuntos
Endotoxemia/metabolismo , Macrófagos/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas/fisiologia , Transativadores/fisiologia , Animais , Endotoxemia/patologia , Imunofenotipagem , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neutrófilos/patologia , Pneumonia/metabolismo , Pneumonia/patologia , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Transativadores/deficiência , Transativadores/genética , Quimeras de Transplante
17.
Respirology ; 18(2): 255-62, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23066838

RESUMO

Opioids are widely used for their analgesic properties for the management of acute and chronic pain related to a variety of illnesses. Opioid usage is associated with adverse effects on respiration which are often attributed to depression of the central nervous system. Recent data indicate that opioid use has increased over the last two decades. There is also increasing evidence that opioids have a variety of effects on the lungs besides suppression of respiration. Opioids can affect immune cells function, increase histamine release causing bronchospasm, vaso-constriction and hypersensitivity reactions. Together, these actions have a variety of effects on lung function. Here, we provide a comprehensive review of the effects of opioids on the lungs including the respiratory centre, immune function, airways and pulmonary vasculature.


Assuntos
Analgésicos Opioides/farmacologia , Pulmão/efeitos dos fármacos , Mecânica Respiratória/efeitos dos fármacos , Histamina/metabolismo , Humanos , Sistema Imunitário/efeitos dos fármacos , Sistema Imunitário/fisiologia , Pulmão/fisiologia , Hipersensibilidade Respiratória/fisiopatologia , Mecânica Respiratória/fisiologia , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/fisiologia
18.
Pathogens ; 12(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37623965

RESUMO

Mitochondria are critical in numerous cellular processes, including energy generation. Bacterial pathogens target host cell mitochondria through various mechanisms to disturb the host response and improve bacterial survival. We review recent advances in the understanding of how bacteria cause mitochondrial dysfunction through perturbations in mitochondrial cell-death pathways, energy production, mitochondrial dynamics, mitochondrial quality control, DNA repair, and the mitochondrial unfolded protein response. We also briefly highlight possible therapeutic approaches aimed at restoring the host mitochondrial function as a novel strategy to enhance the host response to bacterial infection.

19.
Pathogens ; 12(3)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36986386

RESUMO

There are about 200 different types of interstitial lung disease (ILD), and a crucial initial step in the assessment of a patient with suspected ILD is achieving an appropriate diagnosis. Some ILDs respond to immunosuppressive agents, while immunosuppression can be detrimental in others, hence treatment is based on the most confident diagnosis with consideration of a patient's risk factors. Immunosuppressive medications have the potential to result in substantial, and perhaps life-threatening, bacterial infections to a patient. However, data on the risk of bacterial infections from immunosuppressive treatment specifically in patients with interstitial lung disease is lacking. We hereby review the immunosuppressive treatments used in ILD patients excluding sarcoidosis, highlight their risk of bacterial infections, and discuss the potential mechanisms that contribute to the increased risk of infections.

20.
Pathogens ; 12(5)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37242396

RESUMO

Allogeneic stem cell transplantation is a lifesaving treatment for many malignancies. Post-transplant patients may suffer from graft versus host disease in the acute and/or the chronic form(s). Post-transplantation immune deficiency due to a variety of factors is a major cause of morbidity and mortality. Furthermore, immunosuppression can lead to alterations in host factors that predisposes these patients to infections. Although patients who receive stem cell transplant are at an increased risk of opportunistic pathogens, which include fungi and viruses, bacterial infections remain the most common cause of morbidity. Here, we review bacterial pathogens that lead to pneumonias specifically in the chronic GVHD population.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA