RESUMO
Thermo-chemical behavior of a microalgal biomass; Dunaliella salina was investigated through thermo-gravimetric analyses. Fully-grown D. salina biomass were subjected for biochar conversion using pyrolytic treatment at three distinct heating rates such as 2.5, 5, and 15 °C min-1. The kinetic appraisals were explained by using model-free kinetics viz., Kissinger-Akahira-Sanose, Flynn-Waal-Ozawa and Starink iso-conversional correlations with concomitant evaluation of activation energies (Ea). The Ea value is 194.2 kJ mol-1 at 90% conversion in FWO model, which is higher as compared to other two models. Moisture, volatile substances, and other biochemical components of the biomass were volatilized between 400 and 1000 K in two separate thermo-chemical breakdown regimes. Microscopic and surface characterization analyses were carried out to elucidate the elemental and morphological characteristics of the biomass and biochar. Further, the proficiency of the prepared biochar was tested for removing naphthalene from the watery media. The novelty of the present study lies in extending the applicability of biochar prepared from D. salina for the removal of a model polyaromatic hydrocarbon, naphthalene.