Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Robot ; 9(90): eadl0085, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809994

RESUMO

Sensory feedback for prosthesis control is typically based on encoding sensory information in specific types of sensory stimuli that the users interpret to adjust the control of the prosthesis. However, in physiological conditions, the afferent feedback received from peripheral nerves is not only processed consciously but also modulates spinal reflex loops that contribute to the neural information driving muscles. Spinal pathways are relevant for sensory-motor integration, but they are commonly not leveraged for prosthesis control. We propose an approach to improve sensory-motor integration for prosthesis control based on modulating the excitability of spinal circuits through the vibration of tendons in a closed loop with muscle activity. We measured muscle signals in healthy participants and amputees during different motor tasks, and we closed the loop by applying vibration on tendons connected to the muscles, which modulated the excitability of motor neurons. The control signals to the prosthesis were thus the combination of voluntary control and additional spinal reflex inputs induced by tendon vibration. Results showed that closed-loop tendon vibration was able to modulate the neural drive to the muscles. When closed-loop tendon vibration was used, participants could achieve similar or better control performance in interfaces using muscle activation than without stimulation. Stimulation could even improve prosthetic grasping in amputees. Overall, our results indicate that closed-loop tendon vibration can integrate spinal reflex pathways in the myocontrol system and open the possibility of incorporating natural feedback loops in prosthesis control.


Assuntos
Amputados , Membros Artificiais , Retroalimentação Sensorial , Mãos , Músculo Esquelético , Desenho de Prótese , Reflexo , Vibração , Humanos , Adulto , Mãos/fisiologia , Masculino , Feminino , Retroalimentação Sensorial/fisiologia , Reflexo/fisiologia , Músculo Esquelético/fisiologia , Músculo Esquelético/inervação , Eletromiografia , Tendões/fisiologia , Neurônios Motores/fisiologia , Pessoa de Meia-Idade , Força da Mão/fisiologia , Adulto Jovem
2.
J Neural Eng ; 17(5): 056035, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32674081

RESUMO

OBJECTIVE: We present the design, implementation, and evaluation of a wearable multichannel haptic system. The device is a wireless closed-loop armband driven by surface electromyography (EMG) and provides sensory feedback encoding proprioception. The study is motivated by restoring proprioception information in upper limb prostheses. APPROACH: The armband comprises eight vibrotactile actuators that generate distributed patterns of mechanical waves around the limb to stimulate perception and to transfer proportional information on the arm motion. An experimental study was conducted to assess: the sensory threshold in eight locations around the forearm, the user adaptation to the sensation provided by the device, the user performance in discriminating multiple stimulation levels, and the device performance in coding proprioception using four spatial patterns of stimulation. Eight able-bodied individuals performed reaching tasks by controlling a cursor with an EMG interface in a virtual environment. Vibrotactile patterns were tested with and without visual information on the cursor position with the addition of a random rotation of the reference control system to disturb the natural control and proprioception. MAIN RESULTS: The sensation threshold depended on the actuator position and increased over time. The maximum resolution for stimuli discrimination was four. Using this resolution, four patterns of vibrotactile activation with different spatial and magnitude properties were generated to evaluate their performance in enhancing proprioception. The optimal vibration pattern varied among the participants. When the feedback was used in closed-loop control with the EMG interface, the task success rate, completion time, execution efficiency, and average target-cursor distance improved for the optimal stimulation pattern compared to the condition without visual or haptic information on the cursor position. SIGNIFICANCE: The results indicate that the vibrotactile device enhanced the participants' perceptual ability, suggesting that the proposed closed-loop system has the potential to code proprioception and enhance user performance in the presence of perceptual perturbation.


Assuntos
Membros Artificiais , Dispositivos Eletrônicos Vestíveis , Retroalimentação Sensorial , Antebraço , Humanos , Propriocepção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA