Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Diabetologia ; 64(9): 1917-1926, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34255113

RESUMO

HDL is a complex macromolecular cluster of various components, such as apolipoproteins, enzymes and lipids. Quality evidence from clinical and epidemiological studies led to the principle that HDL-cholesterol (HDL-C) levels are inversely correlated with the risk of CHD. Nevertheless, the failure of many cholesteryl ester transfer protein inhibitors to protect against CVD casts doubts on this principle and highlights the fact that HDL functionality, as dictated by its proteome and lipidome, also plays an important role in protecting against metabolic disorders. Recent data indicate that HDL-C levels and HDL particle functionality are correlated with the pathogenesis and prognosis of type 2 diabetes mellitus, a major risk factor for CVD. Hyperglycaemia leads to reduced HDL-C levels and deteriorated HDL functionality, via various alterations in HDL particles' proteome and lipidome. In turn, reduced HDL-C levels and impaired HDL functionality impact the performance of key organs related to glucose homeostasis, such as pancreas and skeletal muscles. Interestingly, different structural alterations in HDL correlate with distinct metabolic abnormalities, as indicated by recent data evaluating the role of apolipoprotein A1 and lecithin-cholesterol acyltransferase deficiency in glucose homeostasis. While it is becoming evident that not all HDL disturbances are causatively associated with the development and progression of type 2 diabetes, a bidirectional correlation between these two conditions exists, leading to a perpetual self-feeding cycle.


Assuntos
Diabetes Mellitus Tipo 2 , Apolipoproteínas , HDL-Colesterol , Homeostase , Humanos
2.
Front Med (Lausanne) ; 10: 1166871, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275377

RESUMO

Regulatory T-cell (Treg) immunotherapy has emerged as a promising and highly effective strategy to combat graft-versus-host disease (GvHD) after allogeneic hematopoietic cell transplantation (allo-HCT). Both naturally occurring Treg and induced Treg populations have been successfully evaluated in trials illustrating the feasibility, safety, and efficacy required for clinical translation. Using a non-mobilized leukapheresis, we have developed a good manufacturing practice (GMP)-compatible induced Treg product, termed iG-Tregs, that is enriched in cells expressing the potent immunosuppressive human leucocyte antigen-G molecule (HLA-G+). To assess the safety and the maximum tolerable dose (MTD) of iG-Tregs, we conduct a phase I-II, two-center, interventional, dose escalation (3 + 3 design), open-label study in adult patients undergoing allo-HCT from an HLA-matched sibling donor, which serves also as the donor for iG-Treg manufacturing. Herein, we present the clinical protocol with a detailed description of the study rationale and design as well as thoroughly explain every step from patient screening, product manufacturing, infusion, and participant follow-up to data collection, management, and analysis (registered EUDRACT-2021-006367-26).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA