Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 43(15): 7414-31, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26160887

RESUMO

Ty1 Gag comprises the capsid of virus-like particles and provides nucleic acid chaperone (NAC) functions during retrotransposition in budding yeast. A subgenomic Ty1 mRNA encodes a truncated Gag protein (p22) that is cleaved by Ty1 protease to form p18. p22/p18 strongly inhibits transposition and can be considered an element-encoded restriction factor. Here, we show that only p22 and its short derivatives restrict Ty1 mobility whereas other regions of GAG inhibit mobility weakly if at all. Mutational analyses suggest that p22/p18 is synthesized from either of two closely spaced AUG codons. Interestingly, AUG1p18 and AUG2p18 proteins display different properties, even though both contain a region crucial for RNA binding and NAC activity. AUG1p18 shows highly reduced NAC activity but specific binding to Ty1 RNA, whereas AUG2p18 shows the converse behavior. p22/p18 affects RNA encapsidation and a mutant derivative defective for RNA binding inhibits the RNA chaperone activity of the C-terminal region (CTR) of Gag-p45. Moreover, affinity pulldowns show that p18 and the CTR interact. These results support the idea that one aspect of Ty1 restriction involves inhibition of Gag-p45 NAC functions by p22/p18-Gag interactions.


Assuntos
Produtos do Gene gag/metabolismo , Retroelementos , Códon de Iniciação , DNA Viral/metabolismo , Dimerização , Produtos do Gene gag/biossíntese , Produtos do Gene gag/química , Produtos do Gene gag/genética , HIV-1/genética , Ligação Proteica , Biossíntese de Proteínas , RNA/metabolismo , Capuzes de RNA/metabolismo , RNA de Transferência de Metionina/metabolismo , Saccharomyces/genética
2.
Curr Genet ; 62(2): 321-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26650614

RESUMO

Retrotransposons and retroviral insertions have molded the genomes of many eukaryotes. Since retroelements transpose via an RNA intermediate, the additive nature of the replication cycle can result in massive increases in copy number if left unchecked. Host organisms have countered with several defense systems, including domestication of retroelement genes that now act as restriction factors to minimize propagation. We discovered a novel truncated form of the Saccharomyces Ty1 retrotransposon capsid protein, dubbed p22 that inhibits virus-like particle (VLP) assembly and function. The p22 restriction factor expands the repertoire of defense proteins targeting the capsid and highlights a novel host-parasite strategy. Instead of inhibiting all transposition by domesticating the restriction gene as a distinct locus, Ty1 and budding yeast may have coevolved a relationship that allows high levels of transposition when Ty1 copy numbers are low and progressively less transposition as copy numbers rise. Here, we offer a perspective on p22 restriction, including its mode of expression, effect on VLP functions, interactions with its target, properties as a nucleic acid chaperone, similarities to other restriction factors, and future directions.


Assuntos
Capsídeo , Retroelementos , Saccharomyces cerevisiae/genética , Animais , Capsídeo/metabolismo , Dosagem de Genes , Regulação Fúngica da Expressão Gênica , Humanos , Saccharomyces cerevisiae/metabolismo
3.
J Virol ; 89(7): 3922-38, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25609815

RESUMO

UNLABELLED: Saccharomyces cerevisiae and Saccharomyces paradoxus lack the conserved RNA interference pathway and utilize a novel form of copy number control (CNC) to inhibit Ty1 retrotransposition. Although noncoding transcripts have been implicated in CNC, here we present evidence that a truncated form of the Gag capsid protein (p22) or its processed form (p18) is necessary and sufficient for CNC and likely encoded by Ty1 internal transcripts. Coexpression of p22/p18 and Ty1 decreases mobility more than 30,000-fold. p22/p18 cofractionates with Ty1 virus-like particles (VLPs) and affects VLP yield, protein composition, and morphology. Although p22/p18 and Gag colocalize in the cytoplasm, p22/p18 disrupts sites used for VLP assembly. Glutathione S-transferase (GST) affinity pulldowns also suggest that p18 and Gag interact. Therefore, this intrinsic Gag-like restriction factor confers CNC by interfering with VLP assembly and function and expands the strategies used to limit retroelement propagation. IMPORTANCE: Retrotransposons dominate the chromosomal landscape in many eukaryotes, can cause mutations by insertion or genome rearrangement, and are evolutionarily related to retroviruses such as HIV. Thus, understanding factors that limit transposition and retroviral replication is fundamentally important. The present work describes a retrotransposon-encoded restriction protein derived from the capsid gene of the yeast Ty1 element that disrupts virus-like particle assembly in a dose-dependent manner. This form of copy number control acts as a molecular rheostat, allowing high levels of retrotransposition when few Ty1 elements are present and inhibiting transposition as copy number increases. Thus, yeast and Ty1 have coevolved a form of copy number control that is beneficial to both "host and parasite." To our knowledge, this is the first Gag-like retrotransposon restriction factor described in the literature and expands the ways in which restriction proteins modulate retroelement replication.


Assuntos
Recombinação Genética , Retroelementos , Saccharomyces cerevisiae/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Expressão Gênica , Mapeamento de Interação de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Virossomos/metabolismo , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
4.
Nucleic Acids Res ; 41(1): 463-73, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23093595

RESUMO

Ty1, a long terminal repeat retrotransposon of Saccharomyces, is structurally and functionally related to retroviruses. However, a differentiating aspect between these retroelements is the diversity of the replication strategies used by long terminal repeat retrotransposons. To understand the structural organization of cis-acting elements present on Ty1 genomic RNA from the GAG region that control reverse transcription, we applied chemoenzymatic probing to RNA/tRNA complexes assembled in vitro and to the RNA in virus-like particles. By comparing different RNA states, our analyses provide a comprehensive structure of the primer-binding site, a novel pseudoknot adjacent to the primer-binding sites, three regions containing palindromic sequences that may be involved in RNA dimerization or packaging and candidate protein interaction sites. In addition, we determined the impact of a novel form of transposon control based on Ty1 antisense transcripts that associate with virus-like particles. Our results support the idea that antisense RNAs inhibit retrotransposition by targeting Ty1 protein function rather than annealing with the RNA genome.


Assuntos
Retroelementos , Vírion/genética , Sítios de Ligação , Sequências Repetidas Invertidas , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , RNA/química , RNA Antissenso/metabolismo , RNA de Transferência/química , Proteínas de Ligação a RNA/metabolismo , Transcrição Reversa , Saccharomyces/genética
6.
Viruses ; 9(4)2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28394277

RESUMO

The long-terminal repeat retrotransposon Ty1 is the most abundant mobile genetic element in many Saccharomyces cerevisiae isolates. Ty1 retrotransposons contribute to the genetic diversity of host cells, but they can also act as an insertional mutagen and cause genetic instability. Interestingly, retrotransposition occurs at a low level despite a high level of Ty1 RNA, even though S. cerevisiae lacks the intrinsic defense mechanisms that other eukaryotes use to prevent transposon movement. p22 is a recently discovered Ty1 protein that inhibits retrotransposition in a dose-dependent manner. p22 is a truncated form of Gag encoded by internally initiated Ty1i RNA that contains two closely-spaced AUG codons. Mutations of either AUG codon compromise p22 translation. We found that both AUG codons were utilized and that translation efficiency depended on the Ty1i RNA structure. Structural features that stimulated p22 translation were context dependent and present only in Ty1i RNA. Destabilization of the 5' untranslated region (5' UTR) of Ty1i RNA decreased the p22 level, both in vitro and in vivo. Our data suggest that protein factors such as Gag could contribute to the stability and translational activity of Ty1i RNA through specific interactions with structural motifs in the RNA.


Assuntos
Produtos do Gene gag/metabolismo , Biossíntese de Proteínas , RNA Fúngico/metabolismo , Recombinação Genética , Retroelementos , Saccharomyces cerevisiae/genética
7.
Mob Genet Elements ; 6(2): e1154637, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27141325

RESUMO

The long terminal repeat (LTR) and non-LTR retrotransposons comprise approximately half of the human genome, and we are only beginning to understand their influence on genome function and evolution. The LTR retrotransposon Ty1 is the most abundant mobile genetic element in the S. cerevisiae reference genome. Ty1 replicates via an RNA intermediate and shares several important structural and functional characteristics with retroviruses. However, unlike retroviruses Ty1 retrotransposition is not infectious. Retrotransposons integrations can cause mutations and genome instability. Despite the fact that S. cerevisiae lacks eukaryotic defense mechanisms such as RNAi, they maintain a relatively low copy number of the Ty1 retrotransposon in their genomes. A novel restriction factor derived from the C-terminal half of Gag (p22/p18) and encoded by internally initiated transcript inhibits retrotransposition in a dose-dependent manner. Therefore, Ty1 evolved a specific GAG organization and expression strategy to produce products both essential and antagonistic for retrotransposon movement. In this commentary we discuss our recent research aimed at defining steps of Ty1 replication influenced by p22/p18 with particular emphasis on the nucleic acid chaperone functions carried out by Gag and the restriction factor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA