Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 22(1): 246-254, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34978836

RESUMO

Even though the anion exchange membrane fuel cells have many advantages, the stability of their electrocatalysts for oxygen reduction reaction (ORR) has remained remarkably poor. We report here on the ultrathin twisty PdNi-alloy nanowires (NWs) exhibiting a very low reaction overpotential with an E1/2 ∼ 0.95 V versus RHE in alkaline media maintained over 200 K cycles, the highest ever recorded for an electrocatalyst. The mass activity of the used NWs is >10 times higher than fresh commercial Pt/C. Therein, Ni improves the Pd d-band center for a more efficient ORR, and its leaching continuously regenerates the surface active sites. The twisty nanowire morphology imparts multiple anchor points on the electrode surface to arrest their detachment or coalescence and extra stability from self-entanglement. The significance of the NW morphology was further confirmed from the high-temperature durability studies. The study demonstrates that tailoring the number of contact points to the electrode-surface may help realize commercial-grade stability in the highly active electrocatalysts.

2.
J Am Chem Soc ; 144(6): 2580-2589, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35104402

RESUMO

Carbon quantum dots (CQDs) represent a class of carbon materials exhibiting photoresponse and many potential applications. Here, we present a unique property that dissolved CQDs capture large amounts of molecular oxygen from the air, the quantity of which can be controlled by light irradiation. The O2 content can be varied between a remarkable 1 wt % of the CQDs in the dark to nearly half of it under illumination, in a reversible manner. Moreover, O2 depletion enhances away from the air-solution interface as the nearby CQDs quickly regain them from the air, creating a pronounced concentration gradient in the solution. We elucidate the role of the CQD functional groups and show that excitons generated under light are responsible for their tunable adsorbed-oxygen content. Because of O2 enrichment, the photocatalytic efficiency of the CQDs toward oxidation of benzylamines in the air is the same as under oxygen flow and far higher than the existing photocatalysts. The findings should encourage the development of a new class of oxygen-enricher materials and air as a sustainable oxidant in chemical transformations.

3.
Nanoscale ; 16(4): 1758-1769, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38167690

RESUMO

The design of efficient electrocatalysts for improving hydrogen evolution reaction (HER) performance using atomically precise metal nanoclusters (NCs) is an emerging area of research. Here, we have studied the HER electrocatalytic performance of monometallic Cu6 and Au6 nanoclusters and bimetallic Au4Cu2 nanoclusters. A bimetallic Au4Cu2/MoS2 composite exhibits excellent HER catalytic activity with an overpotential (η10) of 155 mV vs. reversible hydrogen electrode observed at 10 mA cm-2 current density. The improved HER performance in Au4Cu2 is due to the increased electrochemically active surface area (ECSA), and Au4Cu2 NCs exhibits better stability than Cu6 and Au6 systems and bare MoS2. This augmentation offers a greater number of active sites for the favorable adsorption of reaction intermediates. Furthermore, by employing X-ray photoelectron spectroscopy (XPS) and Raman analysis, the kinetics of HER in the Au4Cu2/MoS2 composite were elucidated, attributing the favorable performance to better electronic interactions occurring at the interface between Au4Cu2 NCs and the MoS2 substrate. Theoretical analysis reveals that the inherent catalytic enhancement in Au4Cu2/MoS2 is due to favorable H atom adsorption over it and the smallest ΔGH* value. The downshift in the d-band of the Au4Cu2/MoS2 composite influences the binding energy of intermediate catalytic species. This new catalyst sheds light on the structure-property relationship for improving electrocatalytic performance at the atomic level.

4.
Nanoscale Adv ; 3(8): 2366-2376, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36133759

RESUMO

In view of a limited rationale available for designing metal nanocrystals (NCs) to achieve high catalytic activities across various chemical transformations, we offer a new perspective on the optimization of the 'solvent-of-nanocrystal-synthesis' that, to an extent, would help bypass the tedious characterization needs. A systematic improvement in a catalyst is hindered because (i) it relies on size & shape control protocols, surface characterization, understanding molecular transformation mechanisms, and the energetics of the reactant-catalyst interactions, requiring the involvement of different domains experts, and (ii) the insights developed using model reactions may not easily extend to other reactions, although the current studies count on such a hypothesis. In support of (ii), by taking Pd NCs as catalysts and two distinct reaction types, viz. Suzuki coupling and nitroarene reduction, we show to what great extent the reaction rates may vary even for the seemingly similar reactions by using the same NCs. More importantly, for challenge (i), we demonstrate how the addition of a single-step to the current protocol of 'catalyst-synthesis and activity test' can potentially lead to the development of highly active catalysts by first finding a suitable solvent for the NC synthesis, while such solvent-effects are barely considered unlike the same in organic transformation reactions as a matter of routine, for example.

5.
J Colloid Interface Sci ; 590: 175-185, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33548601

RESUMO

We demonstrate for the first time the in-situ synthesis of Pd nanocubes (PdNC) on nitrogen-doped reduced graphene oxide (NRGO) for facile organic transformations wherein the cubic morphology of Pd can only be realized by precision-controlled acid additions in the tune of 0.02 pH variations in the reaction medium. Due to the intimate contact arising from atom-by-atom addition of Pd on NRGO, the composite has exhibited a pronounced catalyst to support charge transfer effect, shift in the d-band center, and lowering of charge-transfer resistance when compared with PdNC-NRGO ex-situ composites prepared by mixing of the preformed components of PdNC and NRGO or PdNCs alone. The activities of these catalysts were tested for the Suzuki coupling and nitroarene reduction reactions using water as an industry-friendly solvent. In both, the in-situ deposited sample exhibited substantially higher catalytic activity as well as stability when compared with an ex-situ sample or pure PdNCs. We show that a very high turnover frequency of ~31300 h-1 and ~900 h-1 are achievable by using the in-situ deposited PdNC-NRGO composite for Suzuki coupling reactions and nitroarene reduction respectively, better than the state-of-the-art catalysts developed recently, in addition to high recyclability.

6.
ACS Appl Mater Interfaces ; 13(8): 10120-10130, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33617231

RESUMO

The efficient recovery of noble metal nanocrystals used in heterogeneous organic transformations has remained a significant challenge, hindering their use in industry. Herein, highly catalytic Pd nanoparticles (NPs) were first prepared having a yield of >98% by a novel hydrothermal method using PVP as the reducing cum stabilizing agent that exhibited excellent turnover frequencies of ∼38,000 h-1 for Suzuki-Miyaura cross-coupling and ∼1200 h-1 for catalytic reduction of nitroarene compounds in a benign aqueous reaction medium. The Pd NPs were more efficient for cross-coupling of aryl compounds with electron-donating substituents than with electron-donating ones. Further, to improve their recyclability, a strategy was developed to embed these Pd NPs on mechanically robust polyurethane foam (PUF) for the first time and a "dip-catalyst" (Pd-PUF) containing 3D interconnected 100-500 µm pores was constructed. The PUF was chosen as the support with an expectation to reduce the fabrication cost of the "dip-catalyst" as the production of PUF is already commercialized. Pd-PUF could be easily separated from the reaction aliquot and reused without any loss of activity because the leaching of Pd NPs was found to be negligible in the various reaction mixtures. We show that the Pd-PUF could be reused for over 50 catalytic cycles maintaining a similar activity. We further demonstrate a scale-up reaction with a single-reaction 1.5 g yield for the Suzuki-Miyaura cross-coupling reaction.

7.
ACS Appl Mater Interfaces ; 12(26): 29324-29334, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32484649

RESUMO

Selective oxidation of amines to imines using sunlight as clean and renewable energy source is an important but challenging chemical transformation because of high reactivity of the generated imines and lack of visible light-responsive materials with high conversion rates. In addition, oxygen gas has to be purged in the reaction mixture in order to increase the reaction efficiency which, in itself, is an energy-consuming process. Herein, we report, for the first time, the use of Ag3PO4 as an excellent photocatalyst for the oxidative coupling of benzyl amines induced by ambient air in the absence of any external source of molecular oxygen at room temperature. The conversion efficiency for the selective oxidation of benzyl amine was found to be greater than 95% with a selectivity of >99% after 40 min of light irradiation indicating an exceptionally high conversion efficiency with a rate constant of 0.002 min-1, a turnover frequency of 57 h-1, and a quantum yield of 19%, considering all of the absorbed photons. Ag3PO4, however, is known for its poor photostability owing to a positive conduction band position and a favorable reduction potential to metallic silver. Therefore, we further employed a simple catalyst regeneration strategy and showed that the catalyst can be recycled with negligible loss of activity and selectivity.

8.
Nanoscale ; 12(19): 10480-10490, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32374332

RESUMO

Solar-driven photocatalysis is emerging as a key chemical transformation strategy due to its favourable energy economy. However, in photocatalytic oxidation reactions where molecular oxygen (O2) is a reactant, achieving higher efficiency requires an O2-saturated environment in order to maintain a high oxygen level on the catalyst surface, necessitating an additional energy-consuming step of O2 separation from air. Here we show that in the presence of carbon quantum dots (CQDs), the oxygen content and the ability of O2 to diffuse in water increase significantly. We first demonstrate a novel strategy to convert several grams of polyethylene, a stubborn pollutant, into highly photoactive CQDs by stepwise dehydrogenation and graphitization. In a typical CQD concentration of ∼1 mg ml-1, the oxygen level in water reaches ∼640 µM, double that of pure water inferring an extremely high O2 content of ∼1 wt% associated with CQDs under ambient conditions. Therefore, when the CQDs were used to catalyze photo-oxidation of aromatic alcohols by sunlight, the efficiency was found higher than previous instances despite those employing high oxygen pressure, temperature and expensive materials. Besides waste polyethylene utilization, the uniqueness of oxygen enrichment in CQD solutions may offer immense prospects including those in photo-oxidation reactions.

9.
Dalton Trans ; 48(21): 7110-7116, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-30949649

RESUMO

Herein, we show that composites of Bi3TaO7-Bi4TaO8X (X = Cl, Br), two important Bi- and Ta-based light-responsive phases, can be prepared by high temperature, ambient air treatment of the precursors including easily oxidizable BiOX that retain the halide phases in excess of 60% and exhibit high photocatalytic activity. Furthermore, when these phases were loaded with less than 1% noble metals (Pd, Pt, Ag), nearly complete separation of the photogenerated excitons was observed, leading to a significant enhancement in the photocatalytic activity.

10.
ACS Appl Mater Interfaces ; 10(40): 33737-33767, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30222309

RESUMO

Water-based renewable energy cycle involved in water splitting, fuel cells, and metal-air batteries has been gaining increasing attention for sustainable generation and storage of energy. The major challenges in these technologies arise due to the poor kinetics of the oxygen reduction reaction (ORR) and the oxygen evolution reactions (OER), besides the high cost of the catalysts. Attempts to address these issues have led to the development of many novel and inexpensive catalysts as well as newer mechanistic insights, particularly so in the last three-four years when more catalysts have been investigated than ever before. With the growing emphasis on bifunctionality, that is, materials that can facilitate both reduction and evolution of oxygen, this review is intended to discuss all major families of ORR, OER, and bifunctional catalysts such as metals, alloys, oxides, other chalcogenides, pnictides, and metal-free materials developed during this period in a single platform, while also directing the readers to specific and detailed review articles dealing with each family. In addition, each section highlights the latest theoretical and experimental insights that may further improve ORR/OER performances. The bifunctional catalysts being sufficiently new, no consensus appears to have emerged about the efficiencies. Therefore, a statistical analysis of their performances by considering nearly all literature reports that have appeared in this period is presented. The current challenges in rational design of these catalysts as well as probable strategies to improve their performances are presented.

11.
Nanoscale ; 10(45): 21396-21405, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30427026

RESUMO

Despite extensive use of Pd nanocrystals as catalysts, the realization of a Pd-based continuous flow reactor remains a challenge. Difficulties arise due to ill-defined anchoring of the nanocrystals on a substrate and reactivity of the substrate under different reaction conditions. We demonstrate the first metal (Pd) nanowire-based catalytic flow reactor that can be used across different filtration platforms, wherein, reactants flow through a porous network of nanowires (10-1000 nm pore sizes) and the product can be collected as filtrate. Controlling the growth parameters and obtaining high aspect ratio of the nanowires (diameter = ∼13 nm and length > 8000 nm) is necessary for successful fabrication of this flow reactor. The reactor performance is similar to a conventional reactor, but without requiring energy-expensive mechanical stirring. Synchrotron-based EXAFS studies were used to examine the catalyst microstructure and Operando FT-IR spectroscopic studies were used to devise a regenerative strategy. We show that after prolonged use, the catalyst performance can be regenerated up to 99% by a simple wash-off process without disturbing the catalyst bed. Thus, collection, regeneration and redispersion processes of the catalyst in conventional industrial reactors can be avoided. Another important advantage is avoiding specific catalyst-anchoring substrates, which are not only expensive, but also non-universal in nature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA