Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(25): e2309281, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38191986

RESUMO

Metal-organic frameworks (MOFs) have attracted immense attention as efficient heterogeneous catalysts over other solid catalysts, however, their chemical environment instability often limits their catalytic potential. Herein, utilizing a flexible unexplored tetra-acid ligand and employing the mixed ligand approach, a 3D interpenetrated robust framework is strategically developed, IITKGP-51 (IITKGP stands for Indian Institute of Technology Kharagpur), which retained its crystallinity over a wide range of pH solution (4-12). Having ample open metal sites (OMSs), IITKGP-51 is explored as a heterogeneous catalyst in one-pot Hantzsch condensation reaction, with low catalyst loading for a broad range of substrates. The synthesis of drug molecules remains one of the most significant and emergent areas of organic and medicinal chemistry. Considering such practical utility, biologically important Nemadipine B and Nifedipine drug molecules (calcium channel protein inhibitor) are synthesized for the first time by using this catalyst and fully characterized via SC-XRD and other spectroscopic methods. This report inaugurates the usage of a MOF material as a catalyst for the synthesis of drug molecules.


Assuntos
Di-Hidropiridinas , Estruturas Metalorgânicas , Catálise , Di-Hidropiridinas/química , Estruturas Metalorgânicas/química , Preparações Farmacêuticas/química
2.
Chemistry ; 30(34): e202400375, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38622985

RESUMO

Although it is well-known that the Lewis acidity of Metal-Organic Frameworks (MOFs) can effectively enhance their catalytic activity in organic transformations, access to these Lewis-acidic sites remains a key hurdle to widespread applications of Lewis-acidic catalysis by MOFs. Easy accessibility of strong Lewis acidic sites onto 2D MOFs by using proper activation methods can be a cornerstone in attaining desired catalytic performance. Herein, we report a new 2D chemically stable MOF, IITKGP-60, which displayed excellent framework robustness over a wide pH range (2-12). Benefiting from the abundant open metal sites (OMSs) and framework robustness, the catalytic activity of the developed material was explored in one-pot three-component Strecker reaction and Knoevenagel condensation reaction. Moreover, the developed catalyst is superior in catalyzing the reactions involving sterically hindered substrate (1-naphthaldehyde) with high turnover number. A comparative catalytic study was conducted using different activation methods (chloroform and methanol exchanged activated samples), highlighting the significant effect of activation methods on its catalytic performances. The sustainable synthetic pathway under solvent-free conditions for a broad scope of substrates using low catalyst loading and excellent recyclability made the developed pH-stable framework a promising heterogeneous catalyst.

3.
Inorg Chem ; 63(22): 10403-10413, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38761138

RESUMO

Development of a simple, cost-efficient, and portable UO22+ sensory probe with high selectivity and sensitivity is highly desirable in the context of monitoring radioactive contaminants. Herein, we report a luminescent Co-based metal-organic framework (MOF), {[Me2NH2]0.5[Co(DATRz)0.5(NH2BDC)]·xG}n (1), equipped with abundant amino functionalities for the selective detection of uranyl cations. The ionic structure consists of two types of channels decorated with plentiful Lewis basic amino moieties, which trigger a stronger acid-base interaction with the diffused cationic units and thus can selectively quench the fluorescence intensity in the presence of other interfering ions. Furthermore, the limit of detection for selective UO22+ sensing was achieved to be as low as 0.13 µM (30.94 ppb) with rapid responsiveness and multiple recyclabilities, demonstrating its excellent efficacy. Density functional theory (DFT) calculations further unraveled the preferred binding sites of the UO22+ ions in the tubular channel of the MOF structure. Orbital hybridization between NH2BDC/DATRz and UO22+ together with its significantly large electron-accepting ability is identified as responsible for the luminescence quenching. More importantly, the prepared 1@PVDF {poly(vinylidene difluoride)} mixed-matrix membrane (MMM) displayed good fluorescence activity comparable to 1, which is of great significance for their practical employment as MOF-based luminosensors in real-world sensing application.

4.
Small ; 19(47): e2304581, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37501327

RESUMO

The sensing and monitoring of toxic oxo-anion contaminants in water are of significant importance to biological and environmental systems. A rare hydro-stable SIFSIX metal-organic framework, SiF6 @MOF-1, {[Cu(L)2 (H2 O)2 ]·(SiF6 )(H2 O)}n , with exchangeable SiF6 2- anion in its pore is strategically designed and synthesized, exhibiting selective detection of toxic Cr2 O7 2- oxo-anion in an aqueous medium having high sensitivity, selectivity, and recyclability through fluorescence quenching phenomena. More importantly, the recognition and ion exchange mechanism is unveiled through the rarely explored single-crystal-to-single crystal (SC-SC) fashion with well-resolved structures. A thorough SC-SC study with interfering anions (Cl- , F- , I- , NO3 - , HCO3 - , SO4 2- , SCN- , IO3 - ) revealed no such transformations to take place, as per line with quenching studies. Density functional theory calculations revealed that despite a lesser binding affinity, Cr2 O7 2- shows strong orbital mixing and large driving forces for electron transfer than SiF6 2- , and thus enlightens the fluorescence quenching mechanism. This work inaugurates the usage of a SIFSIX MOF toward sensing application domain under aqueous medium where hydrolytic stability is a prime concern for their plausible implementation as sensor materials.

5.
Inorg Chem ; 62(34): 14124-14133, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37589649

RESUMO

Nowadays, coordination polymers (CPs) are promising candidates as sensory materials for their high sensitivity, improved selectivity, fast responsive nature, as well as good recyclability. However, poor chemical stability often makes their practical usage limited. Herein, employing a mixed ligand approach, we constructed a chemically robust CP, {[Zn2L2(DPA)2]·3H2O}n (IITKGP-70, IITKGP stands for the Indian Institute of Technology Kharagpur), which exhibited excellent framework robustness not only in water but also over a broad range of pH solutions (pH = 3-11). The developed framework displayed high selectivity and sensitivity for the detection of trivalent Al3+ ions and toxic hexavalent Cr(VI)-oxo anions in an aqueous medium. The developed framework exhibited an aqueous medium Al3+ turn-on phenomenon with a limit of detection (LOD) value of 1.29 µM, whereas a turn-off effect was observed for toxic oxo-anions (Cr2O72- and CrO42-) having LOD values of 0.27 and 0.71 µM, respectively. Both turn-on and turn-off mechanisms are speculated via spectroscopic methods coupled with several ex situ studies. Such a multiresponsive nature (both turn-on and turn-off) for aqueous medium detection of targeted cations and anions simultaneously in a single platform coupled with high robustness, ease of scalability, recyclability, and fast-responsive nature makes IITKGP-70 highly fascinating as a sensory material for real-world applications.

6.
Inorg Chem ; 62(32): 12989-13000, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37530642

RESUMO

Metal-organic frameworks (MOFs) have been recognized as one of the most promising porous materials and offer great opportunities for the rational design of new catalytic solids having great structural diversity and functional tunability. Despite numerous inherent merits, their chemical environment instability limits their practical usage and demands further exploration. Herein, by employing the mixed-ligand approach, we have designed and developed a robust 3D Co-MOF, [Co2(µ2-O)(TDC)2(L)(H2O)2]·2DMF (H2TDC = 2,5-thiophenedicarboxylic acid, L = 3,3'-azobispyridine), IITKGP-50 (IITKGP stands for the Indian Institute of Technology Kharagpur), which exhibited excellent framework robustness not only in water but also in a wide range of aqueous pH solutions (pH = 2-12). Taking advantage of superior framework robustness and the presence of high-density open metal sites, IITKGP-50 was further explored in catalyzing the two-component Knoevenagel condensation reaction and three-component Strecker reactions. Moreover, to verify the size selectivity of IITKGP-50, smaller to bulkier substrates in comparison with the MOF's pore cavity (8.1 × 5.6 Å2) were employed, in which relatively lesser conversions for the sterically bulkier aldehyde derivatives confirmed that the catalytic cycle occurs inside the pore cavity. The easy scalability, lower catalyst loading compared to that of benchmark MOFs, magnificent conversion rate over a wide range of substrates, and excellent recyclability without significant performance loss made IITKGP-50 a promising heterogeneous catalyst candidate.

7.
Angew Chem Int Ed Engl ; 62(38): e202309136, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37495925

RESUMO

Stereoselective Zweifel olefination using boronate complexes carrying two different reactive π-systems was achieved to synthesize vinyl heteroarenes and conjugated 1,3-dienes in good yield and up to 100 % stereoselectivity, which remains unexplored until now. Most importantly, we report the unprecedented formation of E vs. Z-vinyl heteroarenes for different heteroarenes under identical conditions. Density functional theory (DFT) investigations unveil the mechanistic dichotomy between olefin and heteroarene activation followed by 1,2-migration, leading to E or Z-vinyl heteroarenes respectively. We also report a previously unknown reversal of stereoselectivity by using 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) as an electrophile. The Zweifel olefination using a boronate complex that carries two different olefins was previously unexplored due to significant challenges associated with the site-selective activation of olefins. We have solved this problem and reported the site-selective activation of olefins for the stereoselective synthesis of 1,3-dienes.

8.
Chemistry ; 26(55): 12624-12631, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32557878

RESUMO

The design and construction of "thermodynamically stable" metal-organic frameworks (MOFs) that can survive in liquid water, boiling water, and acidic/basic solutions over a wide pH range is highly desirable for many practical applications, especially adsorption-based gas separations with obvious scalable preparations. Herein, a new thermodynamically stable Ni MOF, {[Ni(L)(1,4-NDC)(H2 O)2 ]}n (IITKGP-20; L=4,4'-azobispyridine; 1,4-NDC=1,4-naphthalene dicarboxylic acid; IITKGP stands for the Indian Institute of Technology Kharagpur), has been designed that displays moderate porosity with a BET surface area of 218 m2 g-1 and micropores along the [10-1] direction. As an alternative to a cost-intensive, cryogenic, high-pressure distillation process for the separation of hydrocarbons, MOFs have recently shown promise for such separations. Thus, towards an application standpoint, this MOF exhibits a higher uptake of C2 hydrocarbons over that of C1 hydrocarbon under ambient conditions, with one of the highest selectivities based on the ideal adsorbed solution theory (IAST) method. A combination of two strategies (the presence of stronger metal-N coordination of the spacer and the hydrophobicity of the aromatic moiety of the organic ligand) possibly makes the framework highly robust, even stable in boiling water and over a wide range of pH 2-10, and represents the first example of a thermodynamically stable MOF displaying a 2D structural network. Moreover, this material is easily scalable by heating the reaction mixture at reflux overnight. Because such separations are performed in the presence of water vapor and acidic gases, there is a great need to explore thermodynamically stable MOFs that retain not only structural integrity, but also the porosity of the frameworks.

9.
Inorg Chem ; 59(10): 7056-7066, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32343905

RESUMO

Two azo functionalized Zn(II)-based MOFs, {[Zn(SDB)(3,3'-L)0.5]·xG}n, IITKGP-13A, and {[Zn2(SDB)2(4,4'-L)]·xG}n, IITKGP-13B (IITKGP stands for Indian Institute of Technology Kharagpur), have been constructed through the self-assembly of isomeric N,N'-donor spacers (3,3'-L = 3,3'-azobispyridine and 4,4'-L = 4,4'-azobispyridine) with organic ligand 4,4'-sulfonyldibenzoic acid (SDBH2) and Zn(NO3)2·6H2O (G represents disordered solvent molecules). Single-crystal X-ray diffraction studies reveal the 2D structure with sql topology for both MOFs. However, the subtle change in positions of coordinating N atoms of spacers makes IITKGP-13A noninterpenetrated, while IITKGP-13B bears a 2-fold interpenetrated structure. IITKGP-13A exhibits higher uptake of CO2 over CH4 and N2 with high IAST selectivities for mixed CO2/CH4 (50:50, biogas) and CO2/N2 (15:85, flue gas) gas systems. In contrast, IITKGP-13B takes up very low amount of CO2 gas (0.4 mmol g-1) compared to IITKGP-13A (1.65 mmol g-1) at 295 K. Density functional theory (DFT)-based electronic structure calculations have been performed to explain the origin of the large differences in CO2 uptake capacity between the two MOFs at the atomistic level. The results show that the value of the change in enthalpy (ΔH) at 298 K temperature and 1 bar pressure for the CO2 adsorption is more negative in IITKGP-13A as compared to that in IITKGP-13B, thus indicating that CO2 molecules are more favored to get adsorbed in IITKGP-13A than in IITKGP-13B. The computed values for the Gibbs' free energy change (ΔG) for the CO2 adsorption are positive for both of the MOFs, but a higher value is observed for the IITKGP-13B. The noncovalent types of interactions are the main contribution toward the attractive energies between the host MOF frameworks and guest CO2 molecules, which has been studied with the help of energy decomposition analysis (EDA).

10.
Am J Hematol ; 92(11): 1198-1203, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28815695

RESUMO

Clinical and experimental evidences support a link between the complement system and the pathogenesis of diabetes complications. CD59, an extracellular cell membrane-anchored protein, inhibits formation of the membrane attack complex (MAC), the main effector of complement-mediated tissue damage. This complement regulatory activity of human CD59 (hCD59) is inhibited by hyperglycemia-induced ɛ-amino glycation of Lys41 . Biochemical and structural analyses of glycated proteins with known three-dimensional structure revealed that glycation of ɛ-amino lysyl residues occurs predominantly at "glycation motives" that include lysyl/lysyl pairs or proximity of a histidyl residue, in which the imidazolyl moiety is ≈ 5Å from the ɛ-amino group. hCD59 contains a distinctive Lys41 /His44 putative glycation motif within its active site. In a model of transgenic diabetic mice expressing in erythrocytes either the wild type or a H44Q mutant form of hCD59, we demonstrate in vivo that the His44 is required for Lys41 glycation and consequent functional inactivation of hCD59, as evidenced using a mouse erythrocytes hemolytic assay. Since (1) the His44 residue is not present in CD59 from other animal species and (2) humans are particularly prone to develop complications of diabetes, our results indicate that the Lys41 /His44 glycation motif in human CD59 may confer humans a higher risk of developing vascular disease in response to hyperglycemia.


Assuntos
Antígenos CD59/genética , Antígenos CD59/metabolismo , Eritrócitos/metabolismo , Regulação da Expressão Gênica , Histidina/metabolismo , Animais , Glicemia , Complicações do Diabetes/genética , Complicações do Diabetes/metabolismo , Diabetes Mellitus Experimental , Membrana Eritrocítica/metabolismo , Glicosilação , Hemólise , Humanos , Lisina/metabolismo , Camundongos , Camundongos Transgênicos , Mutação
11.
Chembiochem ; 15(4): 595-611, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24458973

RESUMO

4EGI-1, the prototypic inhibitor of eIF4E/eIF4G interaction, was identified in a high-throughput screening of small-molecule libraries with the aid of a fluorescence polarization assay that measures inhibition of binding of an eIF4G-derived peptide to recombinant eIF4E. As such, the molecular probe 4EGI-1 has potential for the study of molecular mechanisms involved in human disorders characterized by loss of physiological restraints on translation initiation. A hit-to-lead optimization campaign was carried out to overcome the configurational instability in 4EGI-1, which stems from the E-to-Z isomerization of the hydrazone function. We identified compound 1 a, in which the labile hydrazone was incorporated into a rigid indazole scaffold, as a promising rigidified 4EGI-1 mimetic lead. In a structure-activity relationship study directed towards probing the structural latitude of this new chemotype as an inhibitor of eIF4E/eIF4G interaction and translation initiation we identified 1 d, an indazole-based 4EGI-1 mimetic, as a new and improved lead inhibitor of eIF4E/eIF4G interaction and a promising molecular probe candidate for elucidation of the role of cap-dependent translation initiation in a host of pathophysiological states.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Hidrazonas/metabolismo , Indazóis/química , Tiazóis/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fator de Iniciação 4E em Eucariotos/antagonistas & inibidores , Fator de Iniciação Eucariótico 4G/antagonistas & inibidores , Humanos , Hidrazonas/química , Hidrazonas/farmacologia , Indazóis/síntese química , Indazóis/farmacologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Estereoisomerismo , Relação Estrutura-Atividade , Tiazóis/química , Tiazóis/farmacologia
12.
Am J Hematol ; 88(8): 670-6, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23670858

RESUMO

Increasing evidence links the complement system with complications of human diabetes. The complement regulatory protein CD59, an inhibitor of formation of membrane attack complex (MAC), is inhibited by hyperglycemia-induced glycation fostering increased deposition of MAC, a major effector of complement-mediated tissue damage. CD59, an ubiquitous GPI-anchored membrane protein, is shed from cell membranes by phospholipases generating a soluble form present in blood and urine. We established an enzyme-linked immunosorbent assay (ELISA) to measure serum/plasma glycated human CD59 (hCD59) (GCD59) and evaluated its potential as a diabetes biomarker. We used a synthetic peptide strategy to generate (a) a mouse monoclonal antibody to capture hCD59, (b) a rabbit monoclonal antibody to detect GCD59, and (c) a GCD59 surrogate for assay standardization. ELISA conditions were optimized for precision, reproducibility, and clinical sensitivity. The clinical utility of the assay was initially evaluated in 24 subjects with or without diabetes and further validated in a study that included 100 subjects with and 90 subjects without a diagnosis of diabetes. GCD59 (a) was significantly higher in individuals with than in individual without diabetes, (b) was independently associated with HbA1c, and (c) identified individuals with diabetes with high specificity and sensitivity. We report the development and standardization of a novel, sensitive, and specific ELISA for measuring GCD59 in blood. The assay distinguished individuals with diabetes from those without, and showed strong correlation between GCD59 and HbA1c. Because GCD59 likely contributes to the pathogenesis of diabetes complications, measurement of blood levels of GCD59 may be useful in the diagnosis and management of diabetes.


Assuntos
Antígenos CD59/sangue , Diabetes Mellitus Tipo 2/sangue , Adolescente , Adulto , Animais , Anticorpos Monoclonais Murinos/química , Anticorpos Monoclonais Murinos/imunologia , Biomarcadores/sangue , Biomarcadores/química , Antígenos CD59/química , Antígenos CD59/imunologia , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Hemoglobinas Glicadas/imunologia , Hemoglobinas Glicadas/metabolismo , Glicosilação , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Ratos , Sensibilidade e Especificidade
13.
Arch Biochem Biophys ; 496(2): 109-16, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20153714

RESUMO

Nitrosative stress has various pathophysiological implications. We here present a detailed characterization on the effect of nitrosative stress in Saccharomyces cerevisiae wild-type (Y190) and its isogenic flavohemoglobin mutant (Deltayhb1) strain grown in presence of non fermentable carbon source. On addition of sub-toxic dose of nitrosating agent both the strains showed microbiostatic effect. Cellular respiration was found to be significantly affected in both the strains in presence sodium nitroprusside. Although there was no alteration in mitochondrial permeability potential changes and reactive oxygen species production in both the strains but the cellular redox status is differentially regulated in Deltayhb1 strain both in cytosol and in mitochondria indicating cellular glutathione is the major player in absence of flavohemoglobin. We also found important role(s) of various redox active enzymes like glutathione reductase and catalase in protection against nitrosative stress. This is the first report of its kind where the effect of nitrosative stress has been evaluated in S. cerevisiae cytosol as well as in mitochondria under respiratory proficient conditions.


Assuntos
Mitocôndrias/fisiologia , Nitrogênio/metabolismo , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/fisiologia
14.
Biochem Biophys Res Commun ; 385(4): 507-11, 2009 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-19463791

RESUMO

The biological targets of peroxynitrite toxicity include wide array of biomolecules. Although several enzymes are found to be important components of cellular defense against peroxynitrite, the complete scenario is not totally understood. Yeast flavohemoglobin (YHB) and glutathione-dependent formaldehyde dehydrogenase (GS-FDH) confers resistance against nitric oxide and related reactive nitrogen species. In the present study, when subtoxic dose of peroxynitrite was applied to wild type, Deltayhb1 and Deltasfa1 strains of Saccharomyces cerevisiae, induction of cytosolic catalase was found at activity as well as gene expression level in mutants but not in wild type. Such induction was not due to intracellular reactive oxygen species (ROS) formation. Our in vitro studies confirmed the role of catalase in protection against peroxynitrite-mediated oxidation and nitration and also in peroxynitrite catabolism. This report is first of its kind regarding the novel role of catalase in peroxynitrite detoxification in Deltayhb1 and Deltasfa1 strains of S. cerevisiae.


Assuntos
Catalase/fisiologia , Ácido Peroxinitroso/metabolismo , Saccharomyces cerevisiae/enzimologia , Aldeído Oxirredutases/genética , Carbono-Enxofre Ligases/genética , Catalase/genética , Dioxigenases/genética , Hemeproteínas/genética , Ácido Peroxinitroso/toxicidade , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
15.
Biochem Biophys Res Commun ; 388(3): 612-7, 2009 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-19695224

RESUMO

Protein tyrosine nitration (PTN) is a selective post-translational modification often associated with pathophysiological conditions. Although yeast cells lack of mammalian nitric oxide synthase (NOS) orthologues, still it has been shown that they are capable of producing nitric oxide (NO). Our studies showed that NO or reactive nitrogen species (RNS) produced in flavohemoglobin mutant (Deltayhb1) strain along with the wild type strain (Y190) of Saccharomyces cerevisiae can be visualized using specific probe 4,5-diaminofluorescein diacetate (DAF-2DA). Deltayhb1 strain of S. cerevisiae showed bright fluorescence under confocal microscope that proves NO or RNS accumulation is more in absence of flavohemoglobin. We further investigated PTN profile of both cytosol and mitochondria of Y190 and Deltayhb1 cells of S. cerevisiae using two-dimensional (2D) gel electrophoresis followed by western blot analysis. Surprisingly, we observed many immunopositive spots both in cytosol and in mitochondria from Y190 and Deltayhb1 using monoclonal anti-3-nitrotyrosine antibody indicating a basal level of NO or nitrite or peroxynitrite is produced in yeast system. To identify proteins nitrated in vivo we analyzed mitochondrial proteins from Y190 strains of S. cerevisiae. Among the eight identified proteins, two target mitochondrial proteins are aconitase and isocitrate dehydrogenase that are involved directly in the citric acid cycle. This investigation is the first comprehensive study to identify mitochondrial proteins nitrated in vivo.


Assuntos
Proteínas Mitocondriais/metabolismo , Nitratos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Tirosina/análogos & derivados , Mitocôndrias/metabolismo , Processamento de Proteína Pós-Traducional , Tirosina/metabolismo
16.
J Diabetes Complications ; 31(2): 311-317, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27729184

RESUMO

AIMS: Clinical and experimental evidence supports a strong link between the complement system, complement regulatory proteins and the pathogenesis of diabetes vascular complications. We previously reported that the complement regulatory protein CD59 is inactivated by glycation in humans with diabetes. Our objective for this study is to assess experimentally how the deficiency of CD59 impacts the development of diabetic atherosclerosis in vivo. METHODS: We crossed mCD59 sufficient and deficient mice into the ApoE-/- background to generate mCd59ab+/+/ApoE-/- and mCd59ab-/-/ApoE-/- mice, and induced diabetes by multiple low dose injections of streptozotocin. Atherosclerosis was detected by hematoxylin and eosin (H&E) and oil red-O staining. Membrane attack complex (MAC) deposition and macrophage infiltration were detected by immunostaining. RESULTS: Diabetic mCD59 deficient (mCD59ab-/-/ApoE-/-) mice developed nearly 100% larger atherosclerotic lesion areas in the aorta (7.5%±0.6 vs 3.6%±0.7; p<0.005) and in the aortic roots (H&E: 26.2%±1.9 vs. 14.3%±1.1; p<0.005), in both cases associated with increased lipid (Oil red-O: 14.9%±1.1 vs. 7.8%±1.1; p<0.05) and MAC deposition (6.8%±0.8 vs. 3.0%±0.7; p<0.005) and macrophage infiltration (31.5%±3.7 vs. 16.4%±3.0; p<0.05) in the aortic roots as compared to their diabetic mCD59 sufficient (mCD59ab+/+/ApoE-/-) counterpart. CONCLUSIONS: The deficiency of CD59 accelerates the development of diabetic atherosclerosis.


Assuntos
Apolipoproteínas E/metabolismo , Aterosclerose/metabolismo , Antígenos CD59/metabolismo , Diabetes Mellitus Tipo 1/complicações , Angiopatias Diabéticas/metabolismo , Endotélio Vascular/metabolismo , Animais , Aorta , Apolipoproteínas E/genética , Aterosclerose/complicações , Aterosclerose/imunologia , Aterosclerose/patologia , Glicemia/análise , Antígenos CD59/deficiência , Antígenos CD59/genética , Ativação do Complemento/efeitos dos fármacos , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Cruzamentos Genéticos , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/induzido quimicamente , Angiopatias Diabéticas/imunologia , Angiopatias Diabéticas/patologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/imunologia , Endotélio Vascular/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estreptozocina/toxicidade
17.
Diabetes Care ; 40(7): 981-984, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28450368

RESUMO

OBJECTIVE: Plasma glycated CD59 (pGCD59) is an emerging biomarker in diabetes. We assessed whether pGCD59 could predict the following: the results of the glucose challenge test (GCT) for screening of gestational diabetes mellitus (GDM) (primary analysis); and the diagnosis of GDM and prevalence of large for gestational age (LGA) newborns (secondary analyses). RESEARCH DESIGN AND METHODS: Case-control study of 1,000 plasma samples from women receiving standard prenatal care, 500 women having a normal GCT (control subjects) and 500 women with a failed GCT and a subsequent oral glucose tolerance test (case patients). RESULTS: Compared with control subjects, the median (interquartile range) pGCD59 value was 8.5-fold higher in case patients and 10-fold higher in GDM patients, as follows: control subjects 0.33 (0.19); case patients 2.79 (1.4); GDM patients 3.23 (1.43) (P < 0.001); area under the receiver operating characteristic curve 0.92. LGA prevalence was 4.3% in the lowest quartile and 13.5% in the highest quartile of pGCD59. CONCLUSIONS: One pGCD59 measurement during weeks 24-28 identifies pregnancy-induced glucose intolerance with high sensitivity and specificity and can potentially identify the risk for LGA.


Assuntos
Biomarcadores/sangue , Antígenos CD59/sangue , Diabetes Gestacional/diagnóstico , Intolerância à Glucose/diagnóstico , Glicemia/metabolismo , Estudos de Casos e Controles , Diabetes Gestacional/sangue , Feminino , Idade Gestacional , Intolerância à Glucose/sangue , Teste de Tolerância a Glucose , Humanos , Lactente , Gravidez , Cuidado Pré-Natal , Sensibilidade e Especificidade
18.
J Med Chem ; 60(13): 5392-5406, 2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28590739

RESUMO

Heme-regulated inhibitor (HRI), an eukaryotic translation initiation factor 2 alpha (eIF2α) kinase, plays critical roles in cell proliferation, differentiation, adaptation to stress, and hemoglobin disorders. HRI phosphorylates eIF2α, which couples cellular signals, including endoplasmic reticulum (ER) stress, to translation. We previously identified 1,3-diarylureas and 1-((1,4-trans)-4-aryloxycyclohexyl)-3-arylureas (cHAUs) as specific activators of HRI that trigger the eIF2α phosphorylation arm of ER stress response as molecular probes for studying HRI biology and its potential as a druggable target. To develop drug-like cHAUs needed for in vivo studies, we undertook bioassay-guided structure-activity relationship studies and tested them in the surrogate eIF2α phosphorylation and cell proliferation assays. We further evaluated some of these cHAUs in endogenous eIF2α phosphorylation and in the expression of the transcription factor C/EBP homologous protein (CHOP) and its mRNA, demonstrating significantly improved solubility and/or potencies. These cHAUs are excellent candidates for lead optimization for development of investigational new drugs that potently and specifically activate HRI.


Assuntos
Antineoplásicos/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fator de Iniciação 2 em Eucariotos/antagonistas & inibidores , Fosforilação/efeitos dos fármacos , Neoplasias Cutâneas/tratamento farmacológico , Ureia/farmacologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Camundongos , Estrutura Molecular , Neoplasias Cutâneas/patologia , Relação Estrutura-Atividade , Ureia/análise , Ureia/química
19.
Free Radic Biol Med ; 40(4): 625-31, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16458193

RESUMO

Oxidative stress has been shown to alter cellular redox status in various cell types. Changes in expressions of several antioxidative and antistress-responsive genes along with activation or inactivation of various proteins were also reported during oxidative insult as well as during nitrosative stress. In the present study, we show the effect of nitrosative stress on cellular redox status of fission yeast Schizosaccharomyces pombe. This is the first report of S-nitrosoglutathione (GSNO) reductase activity in S. pombe and its inactivation by GSNO. We also show the inactivation of glutathione reductase (GR) and glutathione peroxidase in the presence of various reactive nitrogen species in vivo. In addition, we first observe the inactivation of GR by peroxynitrite in vivo using S. pombe cells and also similar observations under in vitro conditions. An immunoreactive band against monoclonal anti-3-nitrotyrosine antibody confirms the modification of GR under in vitro conditions. We also show the effect of nitrosative stress on Deltapap1 cells of S. pombe, which are more sensitive to nitrosative stress, indicating the involvement of Pap1 in the protection against nitrosative stress. Finally, exposure of S. pombe cells to reactive nitrogen species reveals an important role of cellular thiol pool in protection against nitrosative stress.


Assuntos
Glutationa Redutase/antagonistas & inibidores , Estresse Oxidativo , Ácido Peroxinitroso/farmacologia , Schizosaccharomyces , Álcool Desidrogenase , Anticorpos Monoclonais/farmacologia , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Glutationa Peroxidase/antagonistas & inibidores , Glutationa Peroxidase/metabolismo , Glutationa Redutase/efeitos dos fármacos , Glutationa Redutase/metabolismo , Óxido Nítrico/metabolismo , Oxirredução , Proteínas Associadas a Pancreatite , Espécies Reativas de Nitrogênio/metabolismo , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/enzimologia , Schizosaccharomyces/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe/metabolismo
20.
Endocr Rev ; 36(3): 272-88, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25859860

RESUMO

It is well established that the organ damage that complicates human diabetes is caused by prolonged hyperglycemia, but the cellular and molecular mechanisms by which high levels of glucose cause tissue damage in humans are still not fully understood. The prevalent hypothesis explaining the mechanisms that may underlie the pathogenesis of diabetes complications includes overproduction of reactive oxygen species, increased flux through the polyol pathway, overactivity of the hexosamine pathway causing intracellular formation of advanced glycation end products, and activation of protein kinase C isoforms. In addition, experimental and clinical evidence reported in past decades supports a strong link between the complement system, complement regulatory proteins, and the pathogenesis of diabetes complications. In this article, we summarize the body of evidence that supports a role for the complement system and complement regulatory proteins in the pathogenesis of diabetic vascular complications, with specific emphasis on the role of the membrane attack complex (MAC) and of CD59, an extracellular cell membrane-anchored inhibitor of MAC formation that is inactivated by nonenzymatic glycation. We discuss a pathogenic model of human diabetic complications in which a combination of CD59 inactivation by glycation and hyperglycemia-induced complement activation increases MAC deposition, activates pathways of intracellular signaling, and induces the release of proinflammatory, prothrombotic cytokines and growth factors. Combined, complement-dependent and complement-independent mechanisms induced by high glucose promote inflammation, proliferation, and thrombosis as characteristically seen in the target organs of diabetes complications.


Assuntos
Antígenos CD59/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Proteínas do Sistema Complemento/metabolismo , Angiopatias Diabéticas/metabolismo , Animais , Angiopatias Diabéticas/imunologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA