Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 27(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35056776

RESUMO

New target molecules, namely, 2-phenylamino-4-phenoxyquinoline derivatives, were designed using a molecular hybridization approach, which was accomplished by fusing the pharmacophore structures of three currently available drugs: nevirapine, efavirenz, and rilpivirine. The discovery of disubstituted quinoline indicated that the pyridinylamino substituent at the 2-position of quinoline plays an important role in its inhibitory activity against HIV-1 RT. The highly potent HIV-1 RT inhibitors, namely, 4-(2',6'-dimethyl-4'-formylphenoxy)-2-(5″-cyanopyridin-2″ylamino)quinoline (6b) and 4-(2',6'-dimethyl-4'-cyanophenoxy)-2-(5″-cyanopyridin-2″ylamino)quinoline (6d) exhibited half-maximal inhibitory concentrations (IC50) of 1.93 and 1.22 µM, respectively, which are similar to that of nevirapine (IC50 = 1.05 µM). The molecular docking results for these two compounds showed that both compounds interacted with Lys101, His235, and Pro236 residues through hydrogen bonding and interacted with Tyr188, Trp229, and Tyr318 residues through π-π stacking in HIV-1 RT. Interestingly, 6b was highly cytotoxic against MOLT-3 (acute lymphoblastic leukemia), HeLA (cervical carcinoma), and HL-60 (promyeloblast) cells with IC50 values of 12.7 ± 1.1, 25.7 ± 0.8, and 20.5 ± 2.1 µM, respectively. However, 6b and 6d had very low and no cytotoxicity, respectively, to-ward normal embryonic lung (MRC-5) cells. Therefore, the synthesis and biological evaluation of 2-phenylamino-4-phenoxyquinoline derivatives can serve as an excellent basis for the development of highly effective anti-HIV-1 and anticancer agents in the near future.


Assuntos
Transcriptase Reversa do HIV/química , Modelos Moleculares , Quinolinas/química , Inibidores da Transcriptase Reversa/química , Sítios de Ligação , Técnicas de Química Sintética , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Humanos , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Quinolinas/síntese química , Quinolinas/farmacologia , Inibidores da Transcriptase Reversa/síntese química , Inibidores da Transcriptase Reversa/farmacologia , Relação Estrutura-Atividade
2.
Drug Res (Stuttg) ; 69(12): 671-682, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31698495

RESUMO

In this study, amino-oxy-diarylquinolines were designed using structure-guided molecular hybridization strategy and fusing of the pharmacophore templates of nevirapine (NVP), efavirenz (EFV), etravirine (ETV, TMC125) and rilpivirine (RPV, TMC278). The anti-HIV-1 reverse transcriptase (RT) activity was evaluated using standard ELISA method, and the cytotoxic activity was performed using MTT and XTT assays. The primary bioassay results indicated that 2-amino-4-oxy-diarylquinolines possess moderate inhibitory properties against HIV-1 RT. Molecular docking results showed that 2-amino-4-oxy-diarylquinolines 8(A-D): interacted with the Lys101 and His235 residue though hydrogen bonding and interacted with Tyr318 residue though π-π stacking in HIV-1 RT. Furthermore, 8A: and 8D: were the most potent anti-HIV agents among the designed and synthesized compounds, and their inhibition rates were 34.0% and 39.7% at 1 µM concentration. Interestingly, 8A: was highly cytotoxicity against MOLT-3 (acute lymphoblastic leukemia), with an IC50 of 4.63±0.62 µg/mL, which was similar with that in EFV and TMC278 (IC50 7.76±0.37 and 1.57±0.20 µg/ml, respectively). Therefore, these analogs of the synthesized compounds can serve as excellent bases for the development of new anti-HIV-1 agents in the near future.


Assuntos
Diarilquinolinas/química , Diarilquinolinas/farmacologia , Transcriptase Reversa do HIV/metabolismo , HIV-1/efeitos dos fármacos , Inibidores da Transcriptase Reversa/química , Inibidores da Transcriptase Reversa/farmacologia , Alcinos , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Benzoxazinas/química , Benzoxazinas/farmacologia , Linhagem Celular Tumoral , Ciclopropanos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/metabolismo , Humanos , Simulação de Acoplamento Molecular , Nevirapina/química , Nevirapina/farmacologia , Nitrilas , Piridazinas/química , Piridazinas/farmacologia , Pirimidinas , Rilpivirina/química , Rilpivirina/farmacologia
3.
Chem Asian J ; 10(4): 925-37, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25702829

RESUMO

Despite the therapeutic potential of marine-derived lamellarin natural products, their preclinical development has been hampered by their lipophilic nature, causing very poor aqueous solubility. In order to develop more drug-like analogs, their structure was streamlined in this study from both the cytotoxic activity and lipophilicity standpoints. First, a modified total synthetic route was successfully devised to construct a library of 59 systematically designed lamellarin analogs, which were then subjected to cytotoxicity and log P determinations. Along with the 25 first-generation lamellarins previously synthesized in our laboratory, the structure-activity and structure-lipophilicity relationships were extensively evaluated. Our results clearly indicated the additional structural requirements around the lamellarin skeleton which, when combined with those reported previously, can provide invaluable guidance for further modifications to increase the aqueous solubility of these compounds.


Assuntos
Alcaloides/síntese química , Alcaloides/farmacologia , Alcaloides/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA