Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(12): 8497-8506, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36883468

RESUMO

The stereochemistry of pericyclic reactions is explained by orbital symmetry conservation, referred to as the Woodward-Hoffmann (WH) rule. Although this rule has been verified using the structures of reactants and products, the temporal evolution of the orbital symmetry during the reaction has not been clarified. Herein, we used femtosecond soft X-ray transient absorption spectroscopy to elucidate the thermal pericyclic reaction of 1,3-cyclohexadiene (CHD) molecules, i.e., their isomerization to 1,3,5-hexatriene. In the present experimental scheme, the ring-opening reaction is driven by the thermal vibrational energy induced by photoexcitation to the Rydberg states at 6.2 eV and subsequent femtosecond relaxation to the ground state of CHD molecules. The direction of the ring opening, which can be conrotatory or disrotatory, was the primary focus, and the WH rule predicts the disrotatory pathway in the thermal process. We observed the shifts in K-edge absorption of the carbon atom from the 1s orbital to vacant molecular orbitals around 285 eV at a delay between 340 and 600 fs. Furthermore, a theoretical investigation predicts that the shifts depend on the molecular structures along the reaction pathways and the observed shifts in induced absorption are attributed to the structural change in the disrotatory pathway. This confirms that the orbital symmetry is dynamically conserved in the ring-opening reaction of CHD molecules as predicted using the WH rule.

2.
Opt Express ; 26(19): 24591-24601, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30469572

RESUMO

The characterization of the temporal waveform of few-cycle laser pulses is an indispensable part in strong-field physics and attosecond science. Recently, a simple waveform-characterization technique called TIPTOE (tunneling ionization with a perturbation for the time-domain observation of an electric field) has been demonstrated for measuring linearly polarized few-cycle pulses. We theoretically and experimentally show that TIPTOE can be extended to resolve more characteristics of an optical waveform: the two-dimensional polarization and the Gouy phase. Based on the plasma fluorescence of a gaseous medium, we achieve all-optical and spatially resolved measurements of the waveform of an infrared pulse. This detection method enables the remote characterization of a waveform without the need to place an apparatus near the focal point of the laser beam. The proposed approach represents a simple and powerful method for conducting waveform diagnostics on few-cycle laser sources.

3.
Nat Commun ; 10(1): 4655, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31604937

RESUMO

Nanoparticles offer unique properties as photocatalysts with large surface areas. Under irradiation with light, the associated near-fields can induce, enhance, and control molecular adsorbate reactions on the nanoscale. So far, however, there is no simple method available to spatially resolve the near-field induced reaction yield on the surface of nanoparticles. Here we close this gap by introducing reaction nanoscopy based on three-dimensional momentum-resolved photoionization. The technique is demonstrated for the spatially selective proton generation in few-cycle laser-induced dissociative ionization of ethanol and water on SiO2 nanoparticles, resolving a pronounced variation across the particle surface. The results are modeled and reproduced qualitatively by electrostatic and quasi-classical mean-field Mie Monte-Carlo (M3C) calculations. Reaction nanoscopy is suited for a wide range of isolated nanosystems and can provide spatially resolved ultrafast reaction dynamics on nanoparticles, clusters, and droplets.

4.
Sci Rep ; 6: 35594, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27752115

RESUMO

Long-wavelength lasers have great potential to become a new-generation drive laser for tabletop coherent light sources in the soft X-ray region. Because of the significantly low conversion efficiency from a long-wavelength light field to high-order harmonics, their pulse characterization has been carried out by measuring the carrier-envelope phase and/or spatial dependences of high harmonic spectra. However, these photon detection schemes, in general, have difficulty in obtaining information on the spectral phases, which is crucial to determine the temporal structures of high-order harmonics. Here, we report the first attosecond streaking measurement of high harmonics generated by few-cycle optical pulses at 1.7 µm from a BiB3O6-based optical parametric chirped-pulse amplifier. This is also the first demonstration of time-resolved photoelectron spectroscopy using high harmonics from a long-wavelength drive laser other than Ti:sapphire lasers, which paves the way towards ultrafast soft X-ray photoelectron spectroscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA