Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 28(52): e202201884, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-35817755

RESUMO

To design ultrabright fluorescent solid dyes, a crystal engineering strategy that enables monomeric emission by blocking intermolecular electronic interactions is required. We introduced propylene moieties to distyrylbenzene (DSB) as bridges between the phenyl rings either side of its C=C bonds. The bridged DSB derivatives formed compact crystals that emit colors similar to those of the same molecules in dilute solution, with high quantum yields. The introduction of flexible seven-membered rings to the DSB core produced moderate distortion and steric hindrance in the DSB π-plane. However, owing to this strategy, it was possible to control the molecular arrangement with almost no decrease in the crystal density, and intermolecular electronic interactions were suppressed. The bridged DSB crystal structure differs from other DSB derivative structures; thus, bridging affords access to novel crystalline systems. This design strategy has important implications in many fields and is more effective than the conventional photofunctional molecular crystal design strategies.

2.
Phys Chem Chem Phys ; 23(17): 10468-10474, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33890957

RESUMO

In this study, soft X-ray emission spectroscopy of an aqueous colloidal dispersion of multi-walled carbon nanotubes modified via the plasma process in an aqueous solution was performed for investigating the electronic state of water molecules on the colloidal particles. In the aqueous dispersion, reconstruction of the hydrogen-bonded network was implied by the O 1s spectral changes in the 1b1' and 1b1'' peaks. Furthermore, the O 1s spectral intensity around the 3a1 state was enhanced to an unusually broad energy range in comparison with previous studies. This unusual spectral change might be attributed to the hybridization of the electronic states of oxygen-containing functional groups on the surface of the plasma-modified multi-walled carbon nanotubes and that of the surrounding water molecules. Our observation indicates not only reconstruction of the hydrogen-bonded network in the aqueous dispersion but also a significant interaction of the electronic states between the water molecules and the plasma-modified multi-walled carbon nanotubes.

3.
Langmuir ; 35(8): 3013-3019, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30716274

RESUMO

Interfaces or interfacial layers, such as gas-liquid interfaces, are critical for many physical and chemical reactions and are utilized for designing a wide range of materials. In this study, we propose a plasma-assisted freeze templating (PFT) method for materials processing. It uses a new type of interfacial reaction field, i.e., plasma-ice interface. In PFT, a micro- or nanoscale liquid layer formed on the ice body of a frozen aqueous solution is used as a reaction field in which the solutes are highly enriched and the chemical reactions are initiated by reactive species from the plasma. We demonstrated the synthesis of a self-standing gold nanoparticle (AuNP) film of porous structure by PFT in which a helium cryoplasma jet was irradiated onto a frozen solution of auric ions. This PFT method accomplished a surfactant-free and area-selective synthesis of a AuNP film and was unique in comparison with the conventional chemical synthesis of nanostructured gold materials. Furthermore, simple control of the AuNP film was demonstrated by tuning the thickness of the thin liquid layer. This was done by changing the temperature or concentration of the aqueous solution. PFT was demonstrated as a thermodynamically size-tunable scheme for material design; it exploits the plasma-ice interface and is expected to become a novel technique for a wide range of micro- and nanoengineering applications.

5.
ACS Appl Mater Interfaces ; 15(10): 13205-13218, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36857173

RESUMO

Photocatalytic CO2 reduction is in high demand for sustainable energy management. Hybrid photocatalysts combining semiconductors with supramolecular photocatalysts represent a powerful strategy for constructing visible-light-driven CO2 reduction systems with strong oxidation power. Here, we demonstrate the novel effects of plasma surface modification of graphitic carbon nitride (C3N4), which is an organic semiconductor, to achieve better affinity and electron transfer at the interface of a hybrid photocatalyst consisting of C3N4 and a Ru(II)-Ru(II) binuclear complex (RuRu'). This plasma treatment enabled the "surface-specific" introduction of oxygen functional groups via the formation of a carbon layer, which worked as active sites for adsorbing metal-complex molecules with methyl phosphonic-acid anchoring groups onto the plasma-modified surface of C3N4. Upon photocatalytic CO2 reduction with the hybrid under visible-light irradiation, the plasma-surface-modified C3N4 with RuRu' enhanced the durability of HCOOH production by three times compared to that achieved when using a nonmodified system. The high selectivity of HCOOH production against byproduct evolution (H2 and CO) was improved, and the turnover number of HCOOH production based on the RuRu' used reached 50 000, which is the highest among the metal-complex/semiconductor hybrid systems reported thus far. The improved activity is mainly attributed to the promotion of electron transfer from C3N4 to RuRu' under light irradiation via the accumulation of electrons trapped in deep defect sites on the plasma-modified surface of C3N4.

6.
ACS Appl Mater Interfaces ; 14(47): 53413-53420, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36397203

RESUMO

Although hexagonal boron nitride (hBN) is a thermally conductive and electrically insulating filler in composite materials, surface modification remains difficult, which limits its dispersibility and functionalization. In this study, carbon layer formation on hBN particles by plasma processing in hydroquinone aqueous solution was investigated as a surface modification technique. Carbon components with features of polymeric hydrogenated amorphous carbon were found to be uniformly distributed on the hydroquinone-aided plasma-modified hBN (HQpBN) particles. Electron spin resonance measurements revealed abundant unpaired electrons in HQpBN, indicating that defects were formed on hBN by plasma processing and that the carbon layer contained dangling bonds. The defects on hBN could help in the attachment of the carbon layer, whereas the dangling bonds could act as reactive sites for further functionalization. The carbon layer on HQpBN was successfully functionalized with isocyanate groups, thus confirming the ability of this carbon layer to facilitate surface modification. These results demonstrate that the carbon layer formed on hBN can provide a designable interface in organic/inorganic composite materials.

7.
Phys Rev E ; 102(5-1): 053207, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33327104

RESUMO

We studied the dynamics of solvated electrons in the early stage of plasma generation in water induced with an intense femtosecond laser pulse. According to the decay kinetics of solvated electrons, a fast recombination process of solvated electrons (geminate recombination) occurred with a more prolonged lifetime (500 ps to 1 ns) than that observed in previous pulse photolysis studies (10-100 ps). This unusually longer lifetime is attributed to additional production of solvated electrons due to abundant free electrons generated with the laser-induced plasma, implying significant influence of free electrons on the dynamics of solvated electrons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA