RESUMO
Transient receptor potential vanilloid 1 (TRPV1) is a Ca(2+)-permeable non-selective cation channel that transmits pain signals. TRPV1 is activated by multiple stimuli such as capsaicin, acid, and heat. During inflammation, TRPV1 is reported to be sensitized by protein kinase C (PKC) in dorsal root ganglia (DRG) neurons, which leads to reduction in the threshold of the temperature for TRPV1 activation to body temperature. This sensitization is considered to contribute to chronic inflammatory pain. In a previous study, we discovered orally active 5,5-diarylpentadienamide TRPV1 antagonists. To examine the effects of our TRPV1 antagonists on PKC-sensitized TRPV1, we developed an in vitro assay system to monitor the TRPV1 sensitization by PKC. In this assay system, our TRPV1 antagonists, such as (2E,4Z)-N-[(3R)-3-hydroxy-2-oxo-1,2,3,4-tetrahydro-5-quinolyl]-5-(4-isopropoxyphenyl)-5-(4-trifluoromethylphenyl)-2,4-pentadienamide (K-685), inhibited the activation of TRPV1 sensitized by PKC. The potentiation of heat-induced inward currents by PKC was seen in rat DRG neurons, and K-685 attenuated these currents. Furthermore, K-685 reversed the thermal hyperalgesia and mechanical allodynia in a rat complete Freund's adjuvant-induced inflammatory pain model. These results therefore suggest that K-685 has a strong potential as a new analgesic drug for the treatment of inflammatory pain.
Assuntos
Analgésicos , Dor Crônica/tratamento farmacológico , Dor Crônica/genética , Adjuvante de Freund/efeitos adversos , Inflamação/complicações , Ácidos Pentanoicos/farmacologia , Ácidos Pentanoicos/uso terapêutico , Proteína Quinase C/fisiologia , Quinolonas/farmacologia , Quinolonas/uso terapêutico , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo , Animais , Dor Crônica/etiologia , Modelos Animais de Doenças , Masculino , Ratos , Ratos Sprague-DawleyRESUMO
A series of benzofuran derivatives were prepared to study their antagonistic activities to the A(2A) receptor. Replacement of the ester group of the lead compound 1 with phenyl ring improved the PK profile, while modifications of the amide moiety showed enhanced antagonistic activity. From these studies, compounds 13c, 13f, and 24a showed good potency in vitro and were identified as novel A(2A) receptor antagonists suitable for oral activity evaluation in animal models of catalepsy.
Assuntos
Antagonistas do Receptor A2 de Adenosina , Benzofuranos/síntese química , Benzofuranos/metabolismo , Receptor A2A de Adenosina/metabolismo , Animais , Benzofuranos/farmacologia , Humanos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Ligação Proteica/fisiologia , Ratos , Relação Estrutura-AtividadeRESUMO
Based on the previously reported lead compound, a series of benzofuran derivatives were prepared to study their antagonistic activities to A(2A) receptor. The replacement of the phenyl group at the 4-position with a heterocyclic ring improved the PK profile and aqueous solubility. From these studies, we discovered a potent new A(2A) antagonist, 12a, which has both a good oral bioavailability and in vivo efficacy on motor disability in MPTP-treated common marmosets.
Assuntos
Antagonistas do Receptor A2 de Adenosina , Benzofuranos/síntese química , Benzofuranos/farmacologia , Animais , Benzofuranos/química , Disponibilidade Biológica , Callithrix , Transtornos das Habilidades Motoras/tratamento farmacológico , Solubilidade , Relação Estrutura-AtividadeRESUMO
To improve the poor pharmacokinetic characteristics of VLA-4 inhibitors, novel piperazinylphenylalanine derivatives were designed. This structure is expected to improve physicochemical properties by increasing overall basicity. By changing components at the 4-position of piperazine and the terminal group of the amido bond, 12t was found to be the most potent of this series of compounds. In addition, dichlorobenzoyl derivative 12aa exhibited better oral availability and showed efficacy in an in vivo model after oral administration.
Assuntos
Técnicas de Química Combinatória , Integrina alfa4beta1/antagonistas & inibidores , Fenilalanina/análogos & derivados , Fenilalanina/síntese química , Piperazinas/síntese química , Piperazinas/farmacologia , Molécula 1 de Adesão de Célula Vascular/efeitos dos fármacos , Administração Oral , Animais , Desenho de Fármacos , Camundongos , Estrutura Molecular , Fenilalanina/química , Fenilalanina/farmacologia , Piperazinas/administração & dosagem , Piperazinas/sangue , Piperazinas/química , Relação Estrutura-AtividadeRESUMO
We have developed a novel and potent chemical series of 5,5-diphenylpentadienamides for targeting TRPV1 in vitro and in vivo. In this investigation, we examined a variety of replacements for the 5-position of dienamides with the goal of addressing issues related to pharmacokinetics. Our data suggest that substitution with alkoxy groups on the phenyl ring at the 5-position increases their ability to penetrate the blood-brain barrier. This investigation culminated in the discovery of compound (R)-36b, which showed a good pharmacokinetic profile. In vivo, compound (R)-36b was found to be effective at reversing mechanical allodynia in rats in a dose-dependent manner, and it reversed thermal hyperalgesia in a model of neuropathic pain induced by sciatic nerve injury.